Gebruiksaanwijzing /service van het product 87C196CB van de fabrikant Intel
Ga naar pagina of 155
87C196CB Supplement to 8XC196NT User’ s Manual.
87C196CB Supplement to 8XC196NT User ’ s Manual August 2004 O rder Num ber : 2 72787 -00 3 CB_title.fm5 Page 1 Tuesday, September 1 5, 1998 9:54 AM.
Information in thi s document is provided in connec tion with Intel pr oducts. No l icense, express or implied, by e stoppel or othe rwise, to any intellectual p roperty rights is gr anted by this doc ument.
iii CONTENTS CHAPTER 1 GUIDE TO THIS MANUAL 1.1 MANUAL CONTENTS .......... ................. ................. ................. ................ ................. ..... 1-1 1.2 RELATED DOCUMENTS ........... ................. ................ ........
87C196CB SUPPLEMENT iv 7.4.4 Progra mming a Me ssage Acc eptance Filter .......... ................. ........... ................. .... 7-17 7.5 CONFIGURING MESSAGE OBJECTS ............ ................. ................. ................. ........ 7-20 7.
v CONTENTS FIGURES Figure Pa ge 2-1 87C196CB Bl ock Diagra m............. ................. ................. ................. ................. ...........2-2 2-2 Clock Ci rcuitry ............... ................ ................. ................. .
8XC196CB SUPPLEMENT vi FIGURES Figur e Page A -2 87C196CB 100- pin QFP Package ...... .. ..... .. ..... .. ..... . ..... ...... . ..... ..... ....... .
vii CONTENTS TABLES Table Pa ge 1-1 Relate d Documents ............ ................. ................. ................. ................ ................. ...... 1-2 2-1 Featu res of the 8XC196NT and 87C196CB .............. ................. .......
.
1 Guide to This Manual.
.
1-1 CHAPTER 1 GUIDE TO THIS MANUAL Thi s document is a supplement to the 8XC196NT Microcontroller User’s Manual . It describ es the differen ces between the 87C196CB and the 8XC196NT.
87C196CB SUPPLEMENT 1-2 Chapte r 9 — Interfacing with External Memory — discu sses differenc es in th e bus timing mode s supp orted by the 8 X C196NT a nd the 8 7C196CB.
2 Architectural Overview.
.
2-1 CHAPTER 2 ARCHITECTU RAL OVERVIEW This ch apter describes architectu ral differences between the 87C196 CB and the 8XC196NT. Both the 8XC196NT and the 87C19 6CB are designed for high-speed calculations and fast I/O.
87C196CB SUPPLEMENT 2-2 2.2 BLOCK DIAGRAM Figure 2- 1 shows the major blocks within the device. The 8XC196NT and 87C196CB hav e the same peripheral set with the exceptio n of the CAN (controller area network) peripheral, which i s uniqu e to the 87C196CB.
2-3 ARCHITECTURAL OVERVIEW Figure 2- 2. Clock Circuitry The rising edg es of PH1 and PH2 generate the in ternal CLKOUT signal (Figure 2-3). Th e clock circuitry routes separ ate internal clock signals to the CPU an d the peripher als to provide flexibil- ity in power man agement.
87C196CB SUPPLEMENT 2-4 Figure 2-3 . Internal Cloc k Phases The comb ined period o f phase 1 and pha se 2 of the internal CLKOUT sig nal defines the ba sic time unit known as a state t ime or state . Table 2-2 lists state time duratio ns at various frequen ci es.
2-5 ARCHITECTURAL OVERVIEW Figure 2-4. Effect of Clock Mode on CLKOUT Frequency Table 2-3. Relation ships Between In put Freque ncy, Clock Multi plier, and State Times F XTAL 1 (Frequ ency on XTAL1 ) .
.
Memory Partitions 3.
.
3-1 CHAPTER 3 MEMORY PART ITIONS This chapter describ es the differences in the add ress space of the 87C196CB from that of the 8XC196NT. Th e 87C19 6CB has 56 Kby tes of one-time-pr ogrammable r ead-only mem ory (OT- PROM), while the 8XC196NT is available with 32 Kbytes.
87C196CB SUPPLEMENT 3-2 Table 3-2. 87C19 6CB Memory Map Hex Address Description Addressing Mode s FFF FFF FF2080 Program memory ( After a device reset, the first instruct ion fetch is from FF2080H) .
3-3 MEMORY PARTITIONS Table 3 -3. 87C196CB Pe ripheral SFRs Ports 0, 1, 2, and 6 SFRs Timer 1, Timer 2, and EPA SFRs Address Hi gh (Odd ) Byte L ow (Even) Byte Addres s High (O dd) Byte Low (Even) Byt.
87C196CB SUPPLEMENT 3-4 Table 3 -4. CAN Peripheral SF Rs Mes sag e 15 Mess ag e 11 Addr High ( Odd) Byte Low (Even ) Byte Addr High (Odd) By te Low (Even ) Byte 1EFEH Reserved CAN_MSG15DAT A7 1EBEH Re.
3-5 MEMORY PARTITIONS Message 7 Message 3 and Bit Timing 0 Addr High (Odd ) Byte Low (Even) Byte Addr Hig h (Odd) Byte Low (Even) Byte 1E7EH Reser ved CAN_MSG7 DATA7 1E3EH CAN_BTIM E0 † CAN_MSG3 DAT.
87C196CB SUPPLEMENT 3-6 Table 3-5. Selectin g a Window of Periphera l SFRs Periph eral WSR V alue f or 32-byte Windo w (00E0–00FFH ) WSR V alue for 64-byte Windo w (00C0–00FFH) WSR Value f or 128-.
3-7 MEMORY PARTITIONS Table 3 -6. Selecting a Window of the Upper Regist er File Register RAM Locations WSR Value for 32-byte Win dow (00E0–00FFH) WSR Value for 64-byte Wi n dow (00C0–00FFH ) WSR .
87C196CB SUPPLEMENT 3-8.
3-9 MEMORY PARTITIONS Table 3 -7. Selecting a Window of Uppe r Register RAM Register RAM Locations WSR Value for 32-byte Win dow (00E0–00FFH) WSR Value for 64-byte Wi n dow (00C0–00FFH ) WSR Val u.
87C196CB SUPPLEMENT 3-10 Table 3-8. Windows Base Address WSR V alue for 32-byt e Windo w (00E0–00FFH) WSR Valu e for 64-byte W indo w (00C0–00FFH) WSR Value f or 128-byte Wi ndow (0080–00FFH) Pe.
3-11 MEMORY PARTITIONS Upper Reg ister File 03E0H 5F H 2FH 17H 03C0H 5EH 03A0H 5DH 2EH 0380H 5CH 0360H 5BH 2DH 16H 0340H 5AH 0320H 59H 2CH 0300H 58H 02E0H 57H 2BH 15H 02C0H 56H 02A0H 55H 2AH 0280H 54H.
87C196CB SUPPLEMENT 3-12 Table 3-9 . WSR Settings and Direct Addresses for Windowab le SFRs Registe r Mnem on ic Memo ry Locatio n 32-byte Wi ndows (00E0–00FFH ) 64-byte Windows (00C0–00FFH) 1 28-.
3-13 MEMORY PARTITIONS CAN_MSG7C ON0 1E70H 73H 00F 0H 39H 00F0H 1 CH 00F 0H CAN_MSG8CON0 1E80H 74H 00E0H 3AH 00C0H 1D H 0080H CAN_MSG9CON0 1E90H 74H 00F0H 3AH 00D0H 1 DH 0090H CAN_MSG10C ON0 1EA0H 75H.
87C196CB SUPPLEMENT 3-14 CAN_MSG9DATA0 1E97H 74H 00F 7H 3AH 00D7H 1D H 0097H CAN_MSG10D ATA0 1EA7H 75H 00E7H 3AH 00E7H 1D H 00A7 H CAN_MSG11D ATA0 1EB7H 75H 00F7H 3AH 00F7H 1DH 00B7H CAN_MSG12DATA0 1E.
3-15 MEMORY PARTITIONS CAN_MSG11D ATA2 1EB9H 75H 00F9H 3AH 00F9H 1DH 00B9H CAN_MSG12DATA2 1EC9H 76H 00E 9H 3BH 00C9H 1 DH 00C9H CAN_MSG13DATA2 1ED9H 76H 00F 9H 3BH 00D9H 1 DH 00D9 H CAN_MSG14D ATA2 1E.
87C196CB SUPPLEMENT 3-16 CAN_MSG13D ATA4 1EDBH 76H 00F BH 3BH 00DBH 1 DH 00DBH CAN_MSG14D ATA4 1EEBH 77H 00EB H 3BH 00EBH 1 DH 00EBH CAN_MSG15D ATA4 1EFBH 77H 00F BH 3BH 00FB H 1DH 00F BH CAN_MSG1DATA.
3-17 MEMORY PARTITIONS CAN_MSG15D ATA6 1EFDH 77H 00FDH 3BH 00FDH 1 DH 00FDH CAN_MSG1D ATA7 1E1EH 70H 00FE H 38H 00DEH 1 CH 009EH CAN_MSG2D ATA7 1E2EH 71H 00EEH 38H 00EEH 1C H 0 0AEH CAN_MSG3D ATA7 1E3.
87C196CB SUPPLEMENT 3-18 CAN_MSG2ID1 1E23H 71H 00E3H 38H 00E3H 1CH 00A3H CAN_MSG3I D1 1E33H 71H 00F3H 38H 00F3H 1 CH 00B 3H CAN_MSG4ID1 1E43H 72H 00E 3H 39H 00C3H 1 CH 00C3H CAN_MSG5ID1 1E53H 72H 00F3.
3-19 MEMORY PARTITIONS CAN_MSG4ID3 1E45H 72H 00E 5H 39H 00C5H 1 CH 00C5H CAN_MSG5ID3 1E55H 72H 00F5H 39H 00D5H 1 CH 00D5H CAN_MSG6ID3 1E65H 73H 00E5H 39H 00E5H 1CH 00E5H CAN_MSG7I D3 1E75H 73H 00F5 H .
EPA2_TI ME † 1F6AH 7B H 00EA H 3DH 00EAH 1EH 00EAH EPA3_TI ME † 1F6EH 7B H 00EE H 3DH 00EEH 1EH 00EEH EPA8_TI ME † 1F82H 7CH 00E2H 3EH 00C2H 1FH 0082H EPA9_TI ME † 1F86H 7CH 00E6H 3EH 00C6H 1F.
4 Standard and PTS Interrupts.
.
4-1 CHAPTER 4 STANDARD A ND PTS INTERRUPTS 4.1 INTERRUPT SOURCES, VECTORS, AND PRIORITIE S The interr upt structure of the 87C19 6CB is the same as that of the 8XC196 NT. The only differ- ence is that INT13 , which was re served on the 8XC196NT, suppo rts the CAN peripheral.
87C196CB SUPPLEMENT 4-2 INT_MASK 1 Address: Reset St ate : 0013H 00H The interrupt mask 1 (INT_MA SK1) register enables or disables (mask s) individual interrupt reques ts. (The EI and DI instruc tions enable and disable servicing of all m askable interrupts .
5 I/O Ports.
.
5-1 CHAPTER 5 I/O POR TS 5.1 PORT 0 AND EPORT The I/O por t s of the 87C19 6CB are functionally identically to those of th e 8XC196NT. However, the 87C1 96CB implements all eight pins of p ort 0, and the 100 -pin 87C196CB also implements all eight pins of the EPORT.
5-2 87C196CB SUPPLEMENT EP_DIR Address: Reset Stat e: 1FE3H FFH In I/O mod e, each bit of the extended port I/O direct ion (EP_DI R) register contr ols the direct ion of the corresponding pin. Clearing a bit conf igures a pin as a complementary outpu t; setting a bit configures a pin as either an input or an open-drain output.
5-3 I/O PORTS EP_PIN Address: Reset Stat e: 1FE7H XXH Each bit of the exten ded port input ( EP_PIN) r egister reflects t he current s tate of the corresponding pin, regardless of the pin configuration.
.
6 Analog-to-digital ( A/D) Converter.
.
6-1 CHAPTER 6 ANALOG- TO-DIGIT AL ( A/D) CO NVERTER 6.1 ADDITIONAL A/D INPUT CHAN NELS The 87C196CB’s A/D converter is functio nally identical to that of the 8XC196NT, but it has eight analog input channels instead of four. Table 6 -1 lists the A/D signals.
87C196CB SUPPLEMENT 6-2 AD_COMMAND Address: Reset Stat e: 1F ACH C0H The A/D command ( A D_CO M MAN D) register selects the A/D channel number t o be converted, controls whether the A/D convert er start s imm ed iately or w ith an EPA command, and se lects the conversion mode.
6-3 ANALOG-TO-DIGITAL ( A/D) CONVERTER AD_RESULT ( Read) Address: Reset Stat e: 1FA AH 7F80H The A/D resu lt ( AD_RESU LT) register consis ts of two bytes.
.
7 CAN Serial Communications Controller.
.
7-1 CHAPTER 7 CAN SERIAL COMMUN ICAT IONS CON TRO LL ER The 87C196CB has a peripheral n ot found in the 8XC196NT — the CAN (co ntroller area net- work) p eripheral. The CAN serial communications con troller manages co mmunications between multiple network no des.
87C196CB SUPPLEMENT 7-2 This bus co nfiguration reduces point-to-p oint wiring requ irements, making the CAN controller well suited to auto motive and f actory autom ation ap plications. In ad dition, it relieves the C PU of much o f the communications b urden while providin g a high level of d ata integrity throug h error management logic.
7-3 CAN SERIAL COMMUNICATIONS CONTROLLER 7.2 CAN CONTROLLER SIGNALS AND REGISTERS Table 7-1 describes the CAN con troller’s pins, and Table 7-2 describes the contro l and status reg- isters.
87C196CB SUPPLEMENT 7-4 7.3 CAN CONTROLLER OPERATION This sectio n describes the address map , message obje cts, message frames (which contain mes- sage objects), er ror detection and managemen t logic, and bit timing for CAN transmissions and receptions.
7-5 CAN SERIAL COMMUNICATIONS CONTROLLER 7.3.1 Addres s Map The CAN controller ha s 256 bytes of RAM, contain i ng 15 message objects and control and s tatus registers at fixed addresses. Each message o bject occupies 15 con secutive bytes beginning at a base address that is a multiple of 16 bytes.
87C196CB SUPPLEMENT 7-6 7.3.2 .1 Receive a nd Transmit Prio rities The lowest-numbered message object always has the high est priority, re gardless of the message identifier. When multip le messages are ready to transmit, the CAN controller transmits the mes- sage from the lowest-numbered message object first.
7-7 CAN SERIAL COMMUNICATIONS CONTROLLER 7.3.3 Mes sage Frame s A message object is co ntained within a message frame that add s control a nd error-d etection bits to the content of the message object. The f rame for an extended message differs slightly from that for a standard messag e, but they contain similar information.
87C196CB SUPPLEMENT 7-8 Table 7-6 . Standard Mess age Frame Field Description Bit Count SOF Start-of-fr ame. A dominant (0) bit marks the beginning of a message fram e. 1 Arbitrati on 11-bit message identifier. 12 RTR. Remote transm ission request. Dominant (0) for data frames; recessive (1) for remot e frames.
7-9 CAN SERIAL COMMUNICATIONS CONTROLLER 7.3.4 Error D etection and Management Logic The CAN contro ller has several error d etection mechanisms, includ ing cyclical redundancy checking (CRC) and bit cod ing rules (stuf fing and destuff ing).
87C196CB SUPPLEMENT 7-10 7.3.5 Bit Timing A message object consists of a series of bits transmitted in consecutive bit times. The CAN pro- tocol specifies a bit time com posed of four separate, no nov.
7-11 CAN SERIAL COMMUNICATIONS CONTROLLER Figure 7-5. A Bit Time as Impleme nted in the CAN Con troller Table 7-9 . CAN Controller Bit Time Segments Symb ol Defin itio n t SYNC _ SEG This tim e segment is equivalent to SYNC_SEG in the CAN protocol. Its length is one time quantum .
87C196CB SUPPLEMENT 7-12 7.3.5 .1 Bit Timing Equations The bit timing eq uations of the integrated CAN contr oller are equivalent to tho se for the 82527 CAN peripheral with the DSC bit in the CPU interface register set (system clock divided by two).
7-13 CAN SERIAL COMMUNICATIONS CONTROLLER 7.4 CONFIGURING THE CAN CON TROLLER This section explain s how to configur e the CAN controller. Several registers combine to control the configu ration: the CAN control register, the two bit timing registers, and the three mask reg- isters.
87C196CB SUPPLEMENT 7-14 1 IE Interr upt Enable This bit globally enables and di sables interrupt s (error, status -change, and message object transmit and receive interrupts) .
7-15 CAN SERIAL COMMUNICATIONS CONTROLLER 7.4.2 Pro gramming the Bit Timing 0 (CAN_BTIME 0) Register Bit timing register 0 ( Figure 7-7) defines the length of one time quan tum and the maxim um amount by which the samp le point can be moved (t TS EG 1 or t TS EG 2 can be sho rtened and the other lengthened ) to compensate for resynch ron izatio n.
87C196CB SUPPLEMENT 7-16 7.4.3 Pro gramming the Bit Timing 1 (CAN_BTIME 1) Register Bit timing register 1 (Figure 7-8 ) controls the time at which the bus is sampled and the number of samples taken. In s ingle-sample mode, the bu s is sampled once and the value of that sample is considered valid.
7-17 CAN SERIAL COMMUNICATIONS CONTROLLER 7.4.4 Pro gramming a Message Acceptance Filter The mask registers prov ide a method f or developing an acceptance filtering strategy . Without a filtering strategy, a messa ge ob ject could accept an incomin g message only if their identifier s were identica l.
87C196CB SUPPLEMENT 7-18 CAN_SG MSK (87C196CB) Address: Reset State: 1E07H, 1E06 H Unchanged Program the CAN standard global mask (CAN_S G MSK) regist er to mask (“don’t care”) specific message identifier bits for standard mes sage objects.
7-19 CAN SERIAL COMMUNICATIONS CONTROLLER CAN_EG MSK (87C196CB) Address: Reset State: 1E0BH, 1E 0AH, 1E09H, 1E08H Unchanged Program the CAN extended global mask (CAN_E GMSK ) register to mask (“don’t care”) specific message identifier bits for extended mess age objec ts.
87C196CB SUPPLEMENT 7-20 7.5 CONFIGURING MESSAGE OBJE CTS Each message object consists of a con figuration register, a message iden tifier, con trol registers, and data registers (fr om zero to eight bytes of data). This section explains how to conf igure mes- sage objects and determine their status.
7-21 CAN SERIAL COMMUNICATIONS CONTROLLER 7.5.1 Spec ifying a Message Obje ct’s Configuration Each message object conf iguration register (Figure 7-1 2) specifies a message identifier type (standard or extended ), transfer dir ection (transmit or receive), and d ata length (in b ytes).
87C196CB SUPPLEMENT 7-22 7.5.2 Pro gramming the Message Obje ct Identifier Each message identifier register (Figure 7-13) specifies the message’s identifier. For messages with extend ed identifiers, write the identifier to bits ID28:0. For m essages with standard identi- fiers, write the id entifier to bits ID28:1 8.
7-23 CAN SERIAL COMMUNICATIONS CONTROLLER 7.5.3 Pro gramming the Message Obje ct Control Registers Each message object contro l register consists of four bit pairs — one bit of each pair is in true form and one is in com plement form .
87C196CB SUPPLEMENT 7-24 CAN_MSG x CON0 x = 1–15 (87C196CB) Address: Reset State: 1E x 0H ( x = 1–F) Unchanged Program t he CAN message object x control 0 (CAN_MSG x CON0) register to indicate whether the message object is ready to transmit and to contro l whether a success ful tran smiss ion or reception generates an interrupt.
7-25 CAN SERIAL COMMUNICATIONS CONTROLLER 3:2 RXIE Rece ive Interrupt Enable Transmit mes sage ob jects do not use this bit-pair. For a receive message object, set this bit-pair to enable this message object to initiate a receive (RX) interrupt aft er a successful recept ion.
87C196CB SUPPLEMENT 7-26 CAN_MSG x CON1 x = 1–15 (87C196CB) Address: Reset Stat e: 1E x 1H ( x = 1–F ) Unchanged The CAN message object x control 1 (C AN_MSG x CON1) regist er indicates whet her a.
7-27 CAN SERIAL COMMUNICATIONS CONTROLLER 3:2 MSGLST or CPUUPD Message Lost (Receive) For a receive message object, the CAN controller sets this bit-pair to indicate that it stored a new message while the NEWDAT bit-pair was still set, overwriting the previous message.
87C196CB SUPPLEMENT 7-28 CAN_MSG x DATA0–7 x = 1–15 (87C196CB) Address: Reset Stat e: 1E x EH, 1E x DH, 1E x CH, 1E x BH, 1E x AH, 1E x 9H, 1E x 8H, 1E x 7H ( x = 1–F) Unchanged The CAN message object data (CAN_MSG x DATA0–7) regist ers contain data to be transmitted or data received.
7-29 CAN SERIAL COMMUNICATIONS CONTROLLER 7.6 ENABLING THE CAN INTE RRUPTS The CAN con troller has a single interrupt in put (INT13) to the interru pt controller. (Gen erally, PTS interrupt service is no t useful for the CAN con troller because the PTS canno t readily deter- mine the sour ce of the CAN con troller’s multip lexed interr upts.
87C196CB SUPPLEMENT 7-30 1 IE Interr upt Enable This bit globally enables and di sables interrupt s (error, status -change, and message object transmit and receive interrupts) .
7-31 CAN SERIAL COMMUNICATIONS CONTROLLER When the SIE bit in the CAN control r egister is set, the CAN controller g enerates a successful reception (RXOK) interrupt req uest each time it receives a valid message, even if no message ob- ject accepts it.
87C196CB SUPPLEMENT 7-32 7.7 DETERMINING THE CAN CONTROLLER’S I NTERRUPT STATUS A successful reception or transmission or a change in the s tatu s regi ster can cause the CAN con- troller to g enerate an interr upt request. The INT_PEND1 r egister (see Table 7 -2 on p age 7 -3) in- dicates whether a CAN interr upt req uest is pending .
7-33 CAN SERIAL COMMUNICATIONS CONTROLLER If an individual message object caused the interr upt request (CAN_INT = 02–10H), software can read the associated message object control 0 register (Figu re 7-21).
87C196CB SUPPLEMENT 7-34 . CAN_MSG x CON0 ( n = 1–15) Address: 1 E x 0H ( x =1–F) Reset State: Unchanged Program t he CAN mess age object x control 0 register (CAN_MS GxCO N0) to indicat e whet her the message object is ready to transmit and to control whether a success ful trans miss ion or reception generates an interrupt.
7-35 CAN SERIAL COMMUNICATIONS CONTROLLER 7.8 FLOW DIAGRAMS The flow diagrams in this section describe the s teps that your software (shown as CPU) and the CAN controller e xecute to receiv e and transmit messages.
87C196CB SUPPLEMENT 7-36 Figure 7-22. Recei ving a Messag e for Messag e Objects 1–1 4 — CPU Flow (All bits undefined) NEWDAT := 0 Process message contents.
7-37 CAN SERIAL COMMUNICATIONS CONTROLLER Figure 7 -23. Receivi ng a Message for Message Objec t 15 — CPU Flow (All bits undefined) NEWDAT := 0 and RMTPND := 0 Process message contents.
87C196CB SUPPLEMENT 7-38 Figure 7-24. Recei ving a Messag e — CAN Controller Flow NEWDAT := 0 Load identifer and control into buffer Send remote frame Transmission successful? TXIE = 1? INT.
7-39 CAN SERIAL COMMUNICATIONS CONTROLLER Figure 7 -25. Transmi tting a Message — CPU Flow (All bits undefined) CPUUPD := 1 NEWDAT := 1 Want to send? TX_REQ := 1 Power Up Initialization Update Yes No Yes Update message? CPUUPD := 0 Write/calculate message contents.
87C196CB SUPPLEMENT 7-40 Figure 7-26. Transm itting a Messag e — CAN Controller Flow NEWDAT := 0 Load message into buffer Send message Transmission successful? NEWDAT = 1 ? TXIE = 1? INT_PN.
7-41 CAN SERIAL COMMUNICATIONS CONTROLLER 7.9 DESIGN CONSIDE RATIONS This section outlines design considerations for the CAN controller . 7.9 .1 Hardwa re Reset A hardware reset clear s the error man agement coun ters and the bus-off state and leaves the reg- isters with the values listed in Table 7-14.
87C196CB SUPPLEMENT 7-42 The CAN contr oller synchronizes itself to the CAN b us by waiting for 12 8 bus idle states (128 occurrences of 1 1 consecutive recessive bits) before participating in bus activities.
8 Special Operating Modes.
.
8-1 CHAPTER 8 SPECIAL O PERATING MODES 8.1 CLOCK CIRCUITRY The 87C196CB’s idle, powerd own, and ONCE modes are the same as those o f the 8XC196NT. The only differen ce is in the way that the power saving modes disable the clock circuitry (Figure 8-1).
.
9 Interfacing with External Memory.
.
9-1 CHAPTER 9 INTERFACIN G WITH EXTERNAL MEMO RY The 87C1 96CB’s external memory interface is similar to that of the 8XC196NT. However, the 87C196CB su pports only two of the bus timing mo des, modes 3 and 0. In addition, the 100-pin 87C196CB has four ad ditional address pins ( A23:20).
87C196CB SUPPLEMENT 9-2 Figure 9-1 . Modes 0 and 3 Timings A0809-01 t CLKOUT ALE AD15:0 RD# ALE RD# MODE 3 MODE 0 T RLDV = 1t T AVDV = 3t T RLDV = 3t T AVDV = 5t T RHDZ = 1t Data Data Address Addre.
9-3 INTERFACING WITH EXTERNAL MEMORY CCR1 no direct access † The chip configuration 1 (CCR1) register enables the wat chdog tim er and selects the bus timing mode. Tw o of its bits combine with three bits o f CCR0 to contr ol wait states and bus width.
87C196CB SUPPLEMENT 9-4 1 IRC 2 Ready Control This bit, along with IRC0 (CCR0.4) and IRC1 (CCR0.5), limits the number of wait states that can be inserted while the READY pin is held low. Wait states are insert ed into the bus cyc le either until the RE ADY pin is pulled high or until this internal number is reached.
10 Programming the Nonvolatile Memory.
.
10-1 CHAPTER 10 PROGRAMMIN G THE NONVO LATILE MEMO RY The 87C196CB ha s 56 Kbytes of OTPROM (FF2000–FFFFFFH), while the 8XC196NT has only 32 Kbytes (FF2000–FF9FFFH). The 87C19 6CB’s programming signals, registers, and proce- dures are the same as those o f the 8 XC196NT.
10-2 87C196CB SUPPLEMENT 10.3 MEMORY MAP AND CIRCUIT FOR AUTO PROGRAMM ING Because the 87C196CB has an a dditional 24 Kbytes of OTPROM, its auto programming memo ry map (Table 10-3) and circuit (Figure 10-1) differ from those of the 8XC196NT. Table 1 0-2.
10-3 PROGRAMM ING THE NONVOLATILE MEMORY Figure 10-1. Auto Progra mming Circuit 10.4 MEMORY MAP FOR SERIAL PORT P ROGRAMMING The 87C196CB’s memory map (Table 10-4) for ser ial port pro gramm ing differs from that of the 8XC196NT. Th e remaining information o n serial port programmin g is correct fo r the 87C196CB.
10-4 87C196CB SUPPLEMENT The lower 24 Kbytes of OTPROM (FF2000–FF7FFFH) are remappe d to A00 0–FFFFH, and the upper 32 Kbytes (FF8000–FFFFFFH) are mapped to 8000–FFFFH. A b ank switc hing m echa- nism differ entiates between the two address ranges.
A Signal Descriptions.
.
A-1 APPENDIX A SIGNAL DESCR IPTIONS A.1 FUNCTIONAL GROUPINGS OF SIGNALS Table A-1 lists the signals for the 87C196CB, grouped by functio n. A diagram of each package that is cu rrently available shows the pin locatio n of each signal. NOTE As new packages are supp orted, they will be added to th e datasheets first.
87C196CB Supplement A- 2 Figure A-1. 8 7C196CB 84-pin PLCC Package PLLEN P6.3 / T1DIR P6.2 / T1CLK P6.1 / EPA9 / COMP1 P6.0 / EPA8 / COMP0 P1.0 / EPA0 / T2CLK P1.1 / EPA1 P1.2 / EPA2 / T2DIR P1.3 / EPA3 P1.4 / EPA4 P1.5 / EPA5 P1.6 / EPA6 P1.7 / EPA7 V SS1 V CC V REF ANGND P0.
A-3 SIGNAL DESCRIPTIONS Figure A-2. 87C196CB 100-pin QFP Package A.2 SIGNAL DESCR IPTIONS T able A-2 defines the columns used in T ab le A-3, which descri bes the signals. P5.7 / BUSWIDTH P5.2 / WR# / WRL# / SLPWR# P5.5 / BHE# / WRH# P5.3 / RD# / SLPRD# A20 / EPORT.
87C196C B Supplement A-4 Table A-2. Description of Columns of Table A-3 Column Headi ng Descripti on Name Lists the signals, arranged alphabet ically. Many pins have t wo functions, so there are more entries in this column than there are pins. Ever y signal is listed in this column.
A-5 SIGNAL DESCRIPTIONS ADV# O Addre ss Valid This active-low output signal is asserted only during externa l memory accesses. ADV # indicates that valid address informat ion is available on the system address/ data bus. The signal remains low while a valid bus cycle is in progress and is returned high as soon as the bus cycle completes.
87C196C B Supplement A-6 BREQ# O Bus Request This active-low output signal is asserted during a hold cycle when the bus controller has a pending exter nal memory cycle. The device can assert BREQ # at the same time as or after it asserts HLDA# . Once it is asserted, BREQ# rem ains assert ed until HOLD# is remov ed.
A-7 SIGNAL DESCRIPTIONS EA# I External Acc ess This input determines whether mem ory acc esses to special-purpose and program memory partit ions (FF2000–F F 9FF FH) are directed to internal or external memory. These acces ses are direct ed to internal memor y if EA# is held high and to external memor y if EA# is held low.
87C196C B Supplement A-8 HLDA# O Bus Hold Acknowledge This active-low output indicates that the CPU has released the bus a s the result of an external device asserting HOLD# . HLDA# is multiplexed with P2.6 and CPVER. HOLD# I Bus Hold Request An external device uses this act ive-low inpu t signal to request control of the bus.
A-9 SIGNAL DESCRIPTIONS P0.7:0 I Port 0 This is a high-impedanc e, input-only por t. Port 0 pins should no t be left floating. These pins may individually be used as analog inputs ( ACH x ) or digital inputs (P0.
87C196C B Supplement A-10 P6.7:0 I/O Port 6 This is a s tandard 8-bit bidirec tional port. Port 6 is multiplexed as follows: P6.0/EPA 8/CO M P0, P6.1/EP A9/ CO MP 1, P6.
A-11 SIGNAL DESCRIPTIONS PROG# I Programm ing Start During programming, a falling edge latches data on the PBUS and begins programming, while a rising edge ends programming. The current location is programmed with the same data as lon g as PROG# rem a ins asserted, so the data on the PBUS must remain stab le while PROG # is active.
87C196C B Supplement A-12 SD1:0 I/O Data Pins for SSIO 0 and 1 SD0 is multiplexed with P6.5, and SD1 is multiplexed with P6.7. SLP7:0 I/O Slave Port Address/Data bus Slave port address/data bus in multiplexed mode and slave port dat a bus in demultiplexed mode.
A-13 SIGNAL DESCRIPTIONS T2DIR I Timer 2 External Directi on External direction (up/ down) for timer 2. Timer 2 increments when T2DIR is high and decrements when it is low. A lso used in conjunct ion with T2CLK for quadrature counting mode. T2DIR is multiplexed with P1.
87C196C B Supplement A-14 A.3 DEFAULT CONDITIONS Table A-5 lists the default fun ctions of the I/O and co ntrol pins of the micro controller with their values during various oper ating conditions. Tab le A-4 defines the symbols used to represent the pin status.
A-15 SIGNAL DESCRIPTIONS P2.2 EXTINT WK1 (Note 3) (Note 3) P2.3 BREQ# W K1 (Note 3) (Note 3) P2.4 INTOUT# WK1 (Note 3) (Not e 3) P2.5 HOLD# W K1 (Note 3) (Note 3) P2.6 HLDA# WK1 (Note 3) (Not e 3) P2.7 C LKOUT CLK OUT act ive, LoZ0/1 (Not e 3) (Not e 4) P3.
.
Glossary.
.
Glossary -1 GLOSS ARY This glossary def in es acron yms, ab brev iations, and te rms that hav e special meanin g in thi s man- ual. (Chapter 1 d iscusses notational conventions and general termino logy.) absolute error The m aximum differen ce between corr espond ing actual and ideal code transitions .
Glossary -2 87C196CB SUPPLEMENT CAN Controller ar ea network. The 87C196CB’s integrated networkin g periph eral, similar to Intel’s standalone 82527 CAN serial communications con troller, that supports CAN spec ification 2.0. CCBs Chip configuration by tes.
Glossary -3 GLOSSARY code width Th e voltage chan ge correspon ding to th e difference between two ad jacent code transitions . Code width deviations cause differential nonlinearity and nonlin- earity errors. crossta lk See off-isolation. DC input leakage Leakage cu rrent fro m an analog input pin to ground.
Glossary -4 87C196CB SUPPLEMENT FET Field-effect transistor. frequency genera tor The 8XC196MD periph eral that generates o utputs with a fix ed 50% duty cycle an d a progr ammable frequ ency. The frequency generator can be u sed for infrared transmission.
Glossary -5 GLOSSARY ISR See interrupt service routine. linearity errors See differential nonlinea rity and nonlinearity . LONG-INTEGER A 32-bit, s igned variab le with values fro m –2 31 throug h +2 31 –1. LSB 1) Least-significant bit of a byte or least-s ignificant byte of a word.
Glossary -6 87C196CB SUPPLEMENT nonlinearity The maximum deviation of code tran sitions of the terminal-based characteristic from th e corre- sponding code transitions of the idea l characteristic . nonmaskable interrupts Interrupts that can not be masked (disabled) and cannot be as signed to the PTS for processing.
Glossary -7 GLOSSARY prioritized interrupt Any maskable in terrupt o r nonmaskab le NMI. Two of the n onmaskable interrupts (unim plemented opcode and software trap) are not prioritized; th ey vector directly to the interrupt service routine wh en executed.
Glossary -8 87C196CB SUPPLEMENT PTS transfer The mo vement of a single b yte or word from the source memo ry location to the d estination memo ry location. PTS vector A location in special-purp ose memory that holds the starting address of a PTS control block .
Glossary -9 GLOSSARY sample delay The time period between th e time that A/D converter receives th e “start con version” signal an d the time that the sample capacitor is connected to the selected channel. sample delay un certainty The variation in the sample dela y .
Glossary -10 87C196CB SUPPLEMENT source current Current flowing out of a device from V CC . Always a negative va lue. SP Stack pointer. special interrupt Any of the three no nmaskable interrupts (un imple- mented o pcode, software trap, o r NMI).
Glossary-1 1 GLOSSARY transfer function errors Errors inh erent in an analog -to-digital conv ersion process: qua ntizing error , zero-offset error , full-scale error , differential nonlinearity , and n onlinearity .
.
Index.
.
Index -1 A A/D converter, signals, 6-1 AD_COMM AND register, 6-2 AD_RESUL T register, 6-3 Auto programming mode circuit, 10-3 memory map, 10-2 B Block diag r am CAN perip heral, 7-2 clock circu itry, .
87C196CB SUPPLEMENT Inde x-2 P P0_PIN register, 5-1 Period (t), 2-4 Pin diag ra ms, A-1 Pins, reset status, A-14–A-15 Port 0, 5-1 Powerd own mode, pin status, A-14 R Registers AD_COMM AND, 6-2 AD_RE.
Een belangrijk punt na aankoop van elk apparaat Intel 87C196CB (of zelfs voordat je het koopt) is om de handleiding te lezen. Dit moeten wij doen vanwege een paar simpele redenen:
Als u nog geen Intel 87C196CB heb gekocht dan nu is een goed moment om kennis te maken met de basisgegevens van het product. Eerst kijk dan naar de eerste pagina\'s van de handleiding, die je hierboven vindt. Je moet daar de belangrijkste technische gegevens Intel 87C196CB vinden. Op dit manier kan je controleren of het apparaat aan jouw behoeften voldoet. Op de volgende pagina's van de handleiding Intel 87C196CB leer je over alle kenmerken van het product en krijg je informatie over de werking. De informatie die je over Intel 87C196CB krijgt, zal je zeker helpen om een besluit over de aankoop te nemen.
In een situatie waarin je al een beziter van Intel 87C196CB bent, maar toch heb je de instructies niet gelezen, moet je het doen voor de hierboven beschreven redenen. Je zult dan weten of je goed de alle beschikbare functies heb gebruikt, en of je fouten heb gemaakt die het leven van de Intel 87C196CB kunnen verkorten.
Maar de belangrijkste taak van de handleiding is om de gebruiker bij het oplossen van problemen te helpen met Intel 87C196CB . Bijna altijd, zal je daar het vinden Troubleshooting met de meest voorkomende storingen en defecten #MANUAl# samen met de instructies over hun opplosinge. Zelfs als je zelf niet kan om het probleem op te lossen, zal de instructie je de weg wijzen naar verdere andere procedure, bijv. door contact met de klantenservice of het dichtstbijzijnde servicecentrum.