Gebruiksaanwijzing /service van het product FR-F740P van de fabrikant Mitsubishi Electronics
Ga naar pagina of 410
FR-F700P INSTRUCTION MANUAL (Applied) INVERTER FR-F700P INVERTER INSTR UCTION MANUAL (Applied) B HEAD OFFICE: TOKYO BUILDING 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAP AN IB(NA)-0600412ENG-B (1 105)MEE Printed in Japan S pec ifications subject to change with out notice.
A-1 Thank you for choosing this Mitsubishi Inverter . This Instruct ion Manual (Applied) provides instruct i ons for advanced use of the FR-F 700P series inve rters.
A-2 (2) Wiring • Do not install a power factor correction capacitor , surge suppressor or capacitor type filter on the inverter output side. These devices on the inver ter output side may be overheat ed or burn out. • The connection orientation of the output cables U, V , W to the motor affects the rot ation direction of the motor .
I CONTENTS 1 OUTLIN E 1 1.1 Product che cking and parts identific ation ........... ......... .............. .............. ........ 2 1.2 Inverter and peripheral devic es .......... ......... .............. .............. .......... .............. ..
II 3.1.1 Leakage currents a nd counter measures . ............. ............ ............. .................... ............. ......... 4 4 3.1.2 EMC measures . ............. ................... ............. ............. ............. ............. .
III CONTENTS 4.7.1 Multi-speed setti ng ope ration ( Pr. 4 to Pr. 6, Pr. 24 to Pr . 27, Pr. 232 to Pr. 239) ............... 102 4.7.2 J og op eration (Pr. 15, Pr. 16) ........... ............. ................... ............. ............. ..........
IV 4.13.1 Automatic restar t after i nstanta neous pow er fai lure/fly ing start u nder general- purpos e motor control (Pr. 57, Pr. 58, P r. 162 to Pr. 1 65, Pr. 299, P r. 611) <V /F><S MFVC> . ............. ...... 162 4.13.2 Automatic restar t after i nstanta neous pow er fai lure/fly ing start u nder IPM motor co ntrol (Pr.
V CONTENTS 4.20.1 Wiring and configuration of PU c onnector ..... ................... ............. ............. ............. ............. 224 4.20.2 Wiring and co nfiguration of RS-485 termi nals ............ ............. ............. ..........
VI 5.3 Causes and c orrective actions ................ ......... .............. .............. ......... ......... 310 5.4 Correspondences between digital and a ctual characte rs .............. ............. 322 5.5 Check fir st when you have a trouble .
VII CONTENTS 7.2 Common spec ifications ........ .............. .............. .............. ......... .............. ......... 348 7.3 Outline dime nsion drawings ............... .............. ......... .............. .............. ......... 350 7.
VIII <Abbreviations> DU .......................................... Operation panel (FR-DU07) PU........................................... Operation p anel (FR-DU07) and parameter unit (FR-PU04/FR-PU07) Inverter .................................
1 3 4 5 6 7 1 2 1 OUTLINE This chapter describes the basic "OUTLINE" for use of this product. Always read the instructions before using t he equipment. 1.1 Product checking and p art s identificat ion ... ........ .... . 2 1.2 Inver ter and peri phera l devic es .
2 Product chec king and part s identi ficati on 1.1 Product ch eckin g and par ts identifica tion Unpack the inverter and check the cap acity plate on the front cover and the rating plate on the inverter side face to ensure that the product agrees with your order and the inverter is int act.
3 Inve rte r and p eriph eral de vices 1 OUTLINE 1.2 In v er ter and per ipheral de vices CAUTION · Do not install a pow er facto r corr ection capacito r , surge s uppr essor o r capac itor ty pe filter on the inv erter ou tput s ide. T hi s will cause t he inver ter to trip or the capacitor, and surge sup pressor to be dam aged .
4 Inverter and pe ripher al dev ices 1.2.1 Peripheral devices Check the inverter model of the inverter you purchased. Appropriate peripheral devices must be selected according to the capacity .
5 Inve rte r and p eriph eral de vices 1 OUTLINE 400V class Moto r Output (kW) *1 Applicab le Inverte r Model Moulded Case Circuit Breaker (MCCB) *2 or Earth Leakag e Circuit Brea ker (ELB) (NF or NV type) Input Side Ma gnetic Cont actor *3 Pow er fa ct or im pr ovi ng ( AC o r DC ) rea ct or Without With Withou t With 0.
6 Method of removal and reinst allation of the front cover 1.3 Method of remo val and reinstallatio n of the front co v er • Removal of the operati on panel 1) Loos en the two screws on the operation panel. (These screws cannot be removed.) 2) Push the left and right hooks of the operation panel and pull the operation panel toward you to remove.
7 Method of removal and reinst allation of the front cover 1 OUTLINE FR-F720P-37K o r higher , FR-F740P- 37K or higher • Removal • Reinst allation CAUTION Fully ma ke sur e that the fron t cove r has been r einstalle d securel y . Alw ays tigh ten the insta llation scr ews of the f ront cov er .
8 Insta llation of the i nverter an d enclos ure de sign 1.4 Installa tion of t he in v er ter and enc losure design When an inverter enclosure is to be designed and manufactured, heat generated by contai ned equipment, etc.
9 Installatio n of the inverter and enclosur e design 1 OUTLINE (3) Dust, dirt, oil mist Dust and dirt will cause such fault s as poor contact of cont act points, reduced insulation o r reduced cooling effec t due to moisture absorption of accumulated dust and dirt, and in-enclosu re temperature rise due to clogged filter .
10 Insta llation of the i nverter an d enclos ure de sign 1.4.2 Cooling system for i nverte r enclosure From the enclosure that contai ns the inverter , the heat of the inverter and other equipment (transformers, lamp s, resistors, etc.
11 Installatio n of the inverter and enclosur e design 1 OUTLINE (2) Clearances around t he inverter T o ens ure ease of heat dissip ation a nd ma intena nce, leav e at le ast the shown c learan ces around the in verter .
12 MEMO.
13 3 4 5 6 7 1 2 2 WIRING This chapter exp lains the basic "W I RING" for use o f this product. Always read the inst ructions before using the equip ment. 2.1 Wiring .. ..... ..... ..... ....... ..... .... ..... ..... ..... ..... .... ......
14 Wiring 2.1 W iring 2.1.1 T erminal connection diagram CAUT ION · T o preven t a mal function due to noise , kee p the signa l cables more than 10cm away fro m the po wer ca bles. Also separate the main circuit wir e of the input side and the outpu t side.
2 WIRING 15 Wi ri ng 2.1.2 EMC filter This inverter is equipped with a buil t-in EMC filter (capacitiv e filter) and common mode choke. The EMC filter is ef fective for reduction of air-pro pagated noise on the input side of the i nverter . The EMC filter is factory-set to disable (OFF).
16 Main ci rcuit te rminal spe cifications 2.2 Main circuit ter minal specifi catio ns 2.2.1 S peci fica tion of ma in cir cui t ter mina l 2.2.2 T erminal arrangement of the mai n ci rcuit terminal, .
2 WIRING 17 Main c ircui t termin al speci fi catio ns FR-F 720P-7.5K , 1 1K FR-F720P -15K FR-F 720P-18.5K to 30K FR-F720P -37K to 55K FR-F 720P-75K t o 1 1 0K R/L1 S/L2 T/L3 N/- P/+ PR PX R1/L11 S1/L21 M Screw size (M5) Screw size (M5) Jumpe r Jumper Charge lamp Motor Power supply ** * * * Screw size of terminal R1/L11, S1/L21, PR and PX is M4.
18 Main ci rcuit te rminal spe cifications 400V class FR-F740P- 0.75K to 5.5K FR-F740P- 7.5K, 1 1K FR-F 740P- 15K , 18. 5K FR-F 740P -22K , 30 K FR-F740P- 37K to 55K FR-F740P- 75K to 1 10K R/L1 S/L2 T.
2 WIRING 19 Main c ircui t termin al speci fi catio ns FR-F740 P-132K to 220 K FR-F740P-250K to 560K CAUTION · T he pow er su pply ca bles m ust be conne cted t o R/L1, S/L2, T/L3. (Phase s equen ce nee ds no t to b e matche d.) N ever co nnect the powe r cable t o the U, V , W of th e inverter.
20 Main ci rcuit te rminal spe cifications 2.2.3 Cables and w iring length (1) Applicable cable size Select the recommended cable size to ensure that a volt age drop will be 2% or less.
2 WIRING 21 Main c ircui t termin al speci fi catio ns 400V class (wh en input pow er supply is 440V ) The line volt age drop can be calculated by the following formula: Line voltag e drop [V]= Use a larger diameter cable when the wiring distance is long or when it is desired to decrease the voltage drop (torque reduction) in the low speed range.
22 Main ci rcuit te rminal spe cifications (2) Notes on earthing (grounding) Always earth (ground) the motor and inverter . 1)Purpose of earthing (grounding) Generally , an electrical apparatus has an earth (gr ound) terminal, which must be connected to th e ground before use.
2 WIRING 23 Main c ircui t termin al speci fi catio ns (3) T ot al wiring length Under general-purpose moto r control Connec t one or mo re gen eral-pu rpose motors with in the t otal wirin g leng th sho wn in the follow ing table .
24 Main ci rcuit te rminal spe cifications 2.2.4 When connecti ng the control circuit and the main circuit separate ly to the power supply • FR-F720P-0.
2 WIRING 25 Main c ircui t termin al speci fi catio ns • FR-F720P- 15K, FR-F740P-15K or hig her 1) Remove the upper screws. 2) Remove the lower screws. 3) Pull the jumper toward you to remove. 4) Connect the sep arate power supply cable for the control ci rcuit to the upper terminals (R1/L1 1, S1/L21) .
26 Control circuit specifica tions 2.3 Control cir cuit specifica tions 2.3.1 Control circuit termina ls indicat es that ter minal fu nction s can be sel ected usi ng Pr .
2 WIRING 27 Control circu it specifications *1 Set Pr . 73 , Pr . 267 , and a voltage/ current in put switch correct ly , then input an analog signal in acc ordance with th e setting.
28 Control circuit specifica tions (2) Output signals (3) Communication Ty p e Te r m i n a l Symbol Te r m i n a l Name Description Rated Spe cifications Refer to Pag e Relay A1, B1, C1 Relay o utput.
2 WIRING 29 Control circu it specifications 2.3.2 Changing the control logic The input signals are set to sink logic (SINK) when shipped from the factory . T o change the control logic , the jumper connector on the back of the control circuit terminal block must be moved to the other position.
30 Control circuit specifica tions 4) Sink logic and source logic ⋅ In sink logic, a signal switches ON when a current flows from the correspondi ng signal input terminal. T erminal SD is common to the contact input signals. T erminal SE is common to the open collector output signals.
2 WIRING 31 Control circu it specifications 2.3.3 Control circuit terminal layout (1) Common terminals of the control circui t (SD, 5, SE) T erminals SD, 5, and S E are all common term inals (0V) for I/O signals and are i solated from each other . Do not earth(ground) these terminals.
32 Control circuit specifica tions 2.3.5 Mounting the operation panel (FR-DU07) on the en closure surface Having an operation p anel on the enclosure surface is convenient. With a connection cable, you can mount the operation panel (FR-DU07) to the enclosure surface, and connect it to th e inverter .
2 WIRING 33 Control circu it specifications 2.3.6 RS-485 terminal bl ock 2.3.7 Communication operat ion Using the PU connector or RS-485 terminal, you can perform communication operati on from a personal computer etc.
34 Connect ion of st and- alone option unit s 2.4 Connection of stand-alone op tion units The inverter accepts a variety of st and-alone option unit s as required. Incorrect connection will c ause inverter damage or accident. Connec t and operate the option uni t carefully in accordance with the corresponding option unit man ual.
35 Connecti on of stan d-alon e optio n unit s 2 WIRING (2) FR-BR-(H) connection ex ample with resi stor unit (3) Connection example with MT -BR5 type resistor unit After making sure that the wiring is correct, set the following parameters: ⋅ Pr . 30 Regenerative function selection = "1" ⋅ Pr .
36 Connect ion of st and- alone option unit s 2.4.2 Connection of the brake unit (FR-BU/MT -BU5) When connecting the brake unit (FR-BU(H)/MT -BU5) to improve the brak e capability at deceleration, make connecti on as shown below .
37 Connecti on of stan d-alon e optio n unit s 2 WIRING (2) Connection with the MT -BU5 (75K or higher) After making sure that the wiring is correct, set the following parameters: ⋅ Pr .
38 Connect ion of st and- alone option unit s 2.4.3 Connection of the brake unit (BU type) Connec t the brake uni t (BU type) correc tly as sho wn below . Incorrec t connecti on will dama ge the invert er . Remove the jumpe r across t erminals H B and PC and terminals TB and H C of the br ake unit and fit it to across terminal s PC and TB.
39 Connecti on of stan d-alon e optio n unit s 2 WIRING (2) Connection with the MT -HC (75K or higher) *1 Remove the jumpe r across terminals R and R1, S and S1 of t he inverter , and connect the contr ol circu it power suppl y to th e R1 and S1 t erminals.
40 Connect ion of st and- alone option unit s 2.4.5 Connection of the power rege neration common con verter (FR-CV) (55K or lower) When connecting the power regeneration common converter (F R-CV ), make connection so that the inverter ter minals (P/+, N/-) and the terminal symbols of the power regeneration common converter (FR-CV) are the s ame.
41 Connecti on of stan d-alon e optio n unit s 2 WIRING 2.4.6 Connection of the power regeneration converter (MT -RC) (75K or higher) When connecting a power regeneration converter (MT -RC), per form wiring securely as shown below . Incorrect connection will damage the regeneration converter and inverter .
42 Connect ion of st and- alone option unit s 2.4.7 Connection of the power factor improving DC reactor (FR-HEL) (1) Keep the surrounding air temperature within the permis sible range (-10 ° C to +50 ° C). Keep enough clearance around the reactor because it heats up.
43 3 4 5 6 7 1 2 3 PRECA UTIONS FOR USE OF THE INVER TER This chapter exp lains the "PRECAUTIONS FOR USE OF THE INVER TER" for use of this product . Always read the inst ructions before using the equip ment. 3.1 EMC and leakage current s ...
44 EMC and le akage current s 3.1 EMC and leak a ge cur rents 3.1.1 Leakage curre nts and countermeasures Capacit ances exist between the inverter I/O cables, other cables and earth and in the motor , through which a leakage current flows. Since its value depends on the s tatic cap acitances, carrier frequency , etc.
45 EMC an d leakag e curre nt s 3 PRECAUTIONS FOR USE OF THE INVE RTER (3) Selection of rated sensit ivity current of earth leakage cir cuit breaker When using the earth leakage current breaker with t.
46 EMC and le akage current s 3.1.2 EMC measur es Some elec tromagnet ic noises enter the in verter to ma lfunctio n it and ot hers are rad iated by th e inverter to malfu nction peripheral devi ces.
47 EMC an d leakag e curre nt s 3 PRECAUTIONS FOR USE OF THE INVE RTER z Dat a l ine filter Data line fil ter is ef fect ive as an EMC meas ure. Provide a data line filter for th e detecto r cable, etc.
48 EMC and le akage current s 3.1.3 Power supply harmonics The inverter may generate power s upply harmonics from it s converter circuit to affect the power generator , power capacitor etc. Power supply harmonics are different from noise and leakage currents in source, frequency band and transmission path.
49 EMC an d leakag e curre nt s 3 PRECAUTIONS FOR USE OF THE INVE RTER 3.1.4 Harmonic suppression guideli ne Harmonic currents flow from the inverter to a power receiving point via a power transformer . The harmonic suppression guideline was establ ished to protect other c onsumers from these outgoing harmonic currents.
50 EMC and le akage current s 1) Calculation of equivalent cap acity P0 of harmonic generating equipment The "equivalent cap acity" is the cap acity of a 6 -pulse converter converted from the cap acity of consumer's harmonic generating equipment and is calculated with the following equation.
51 EMC an d leakag e curre nt s 3 PRECAUTIONS FOR USE OF THE INVE RTER 3) Har monic suppression technique requirement If the outgoing harmonic current is higher than the maximum value per 1kW (contract power) × contract power , a harmonic suppression technique is required.
52 Insta llation of a r eactor 3.2 Ins tal lation of a r eac to r When the invert er is conn ected n ear a large-ca pacity pow er tra nsform er (100 0kV A or more) o r when a power capacitor is to be sw itched o ver , an exce ssive pe ak cu rrent m ay flo w in th e power input circui t, dam aging the conve rter ci rcuit .
53 Inverter -driven 400V class motor 3 PRECAUTIONS FOR USE OF THE INVERTER 3.4 In v er ter-driv e n 400V c lass motor In the PWM ty pe inverter , a surge voltage attribut able to wiring c onstants is generated at the moto r terminals. Especially for a 400V class motor , the surge voltage may deteriorate the insulation.
54 Precautio ns for use of the inve rter 3.5 Precautions f or use of th e in v er ter The FR-F700P series is a highly reliable product, but incorrect peripheral circuit making or operation/handling method may shorten the product life or damage the product.
55 Precautio ns for use of the i nverter 3 PRECAUTI ONS FOR USE OF THE INVERTER (13) If the machin e must not be rest arted when power is res tored af ter a power fail ure, provide a m agnetic cont actor in the inverter's input side a nd also mak e up a sequence whic h will not s witch on the sta rt signal.
56 Failsafe of th e system which use s the inverter 3.6 F ailsaf e of the system w hich uses the in v er ter When a fault o ccurs, the inverter trip s to ou tput a fa ult sign al. Howe ver , a fault output s ignal m ay not be outpu t at a n invert er fault occ urrence w hen the detection circuit or output circuit fa ils, etc .
57 Failsaf e of the sy stem which uses the invert er 3 PRECAUTI ONS FOR USE OF THE INVERTER (2) Backup method o utsid e the i nverter Even if the i nterlock is provid ed by the i nverter st atus si gnal, enough fai lsafe is n ot ensured dependin g on the fai lure sta tus of the in verter it self.
58 MEMO.
59 3 4 5 6 7 1 2 4 PA R A M E T E R S The following marks are used to indi cate the controls as below . (Parameters wit hout any mark are valid for all contr ols.) This chapter expl ains the "P ARAMETERS" for use of this product. Always read the inst ructions before using the equip ment.
60 Operati on p anel ( FR-DU0 7) 4.1 Operation p anel (FR-DU07 ) 4.1.1 Component of the operation panel (FR-DU07) T o mount the operation panel (FR-DU07) on the enclosure surface, r efer to pa ge 32 . No. Component Name Description (a) Unit indicator Hz: Lit to indic ate freq uency .
61 Operati on p anel ( FR-DU0 7) 4 P ARA METERS 4.1.2 Basic operation (factory setting) At power-ON (External operation mode) PU operation mode (output frequency monitor) Parameter setting mode PU Jog.
62 Operati on p anel ( FR-DU0 7) 4.1.3 Easy operatio n mode setting (easy setting mode) Setting of Pr . 79 Operatio n mode select ion accordi ng to comb inatio n of the st art co mmand an d speed c ommand c an be easily mad e. Operation example Start command by the external signal (STF/STR), frequency com mand by .
63 Operati on p anel ( FR-DU0 7) 4 P ARA METERS 4.1.4 Changing the parameter setting value 4.1.5 Displaying the set frequency Press the setting dial ( ) in the PU operation mode or in the External/PU combi ned operation mode 1 ( Pr .79 = "3") to show the set frequency .
64 Para meter li st 4.2 Parameter list 4.2.1 Para meter lis t In the initial setting, only the simple mode parameters are displayed. Set Pr . 160 User g r oup r ead sele ction as required. T o use the inverter under IPM motor control, r efer to page 77 .
65 Parameter Li st Parame ter list 4 P ARA METERS Accelerati on/ dece leration times 20 Accelera tion/dec eleratio n reference frequ en cy 1 to 400 Hz 0.0 1Hz 60Hz 10 9 21 Acceleration/ deceleration time increm ents 0, 1 1 0 109 St a l l prev enti on 22 St all prevent ion operati on level 0 to 150 %, 9999 0.
66 Para meter li st Automatic rest art functions 57 Rest art coast ing ti me 0, 0.1 to 5s, 9999/ 0, 0. 1 t o 30s , 99 99 *2 0.1s 999 9 162 58 Rest art cushi on time 0 to 60s 0.
67 Parameter Li st Parame ter list 4 P ARA METERS ⎯ 125 T erminal 2 frequency setting gain frequ en cy 0 to 40 0Hz 0.01Hz 60Hz 19 3 ⎯ 126 T erminal 4 frequency setting gain frequ en cy 0 to 40 0Hz 0.01Hz 60Hz 19 3 PID oper ation 127 PID co ntr ol automa tic swi tcho ver frequ en cy 0 to 400Hz, 9999 0.
68 Para meter li st ⎯ 160 User group read selection 0, 1, 9999 1 999 9 201 ⎯ 161 Frequenc y setting/key lock operation selection 0, 1, 10, 1 1 1 0 295 Automatic re start func ti on s 162 Autom atic re start aft er i nstant aneo us pow er fa ilur e se lec tion 0, 1, 10 , 1 1 1 0 162 163 First cu shion time for restart 0 to 20s 0.
69 Parameter Li st Parame ter list 4 P ARA METERS Output termi nal function assignment 190 RUN terminal function selection 0 to 5 , 7, 8, 10 to 19, 2 5, 26, 45 to 48, 57 , 64, 67, 70, 79, 85, 90 to 96.
70 Para meter li st Powe r fai lur e st op 261 Pow er fail ur e stop se lect ion 0, 1, 2 , 21 , 22 1 0 169 262 Subtracted freque ncy at dece leration start 0 to 20 Hz 0.01 Hz 3Hz 169 263 Subtraction starting freque ncy 0 to 400Hz, 9999 0.01Hz 60 Hz 169 264 Power-failure dece leration time 1 0 to 3600/ 360s 0.
71 Parameter Li st Parame ter list 4 P ARA METERS Comm unicat ion 549 Protocol selection 0, 1 1 0 247 550 NET mode operati on comm and source sel ection 0, 1, 99 99 1 9 999 219 551 PU mode operat ion comma nd sourc e selection 1, 2 1 2 219 PID operat ion 553 PID deviat ion l imit 0 to 100.
72 Para meter li st Free par a me t er 888 Free param eter 1 0 to 9999 1 9999 288 889 Free param eter 2 0 to 9999 1 9999 288 Energy saving monit or 891 Cumulative power monitor digit shifte d tim es 0 to 4, 9999 1 999 9 177 892 Load factor 30 to 150% 0.
73 Parameter Li st Parame ter list 4 P ARA METERS *1 Differ acc ording to capaci ties. (6%: 0.75K, 4%: 1.5K to 3. 7K, 3%:5.5K , 7.5K, 2% :1 1K to 37K, 1.5%: 45K, 55K, 1% :75K or hi gher) *2 Differ accordi ng to cap aciti es. (55K or lower / 75K or higher) *3 Differ ac cording to cap aciti es.
74 Parame ters ac cord ing t o purpose s 4.3 IPM moto r control < IPM> 77 4.3.1 Setting proced ure of IPM motor co ntrol <IPM> ................................................................... ........... ........ .................. 77 4.
75 4 P ARAMETERS 4.13 Operation selection at power failure and instan taneous pow er failure 162 4.13.1 Automatic resta rt after ins tantaneous p ower failure/f lying start under general-pu rpose motor c ontrol (Pr. 57, Pr. 58 , Pr. 162 to Pr. 165, Pr.
76 4.22.1 Cooling fan operatio n selection (Pr. 244) .. ........................................................ ...................... ................ ................ 281 4.22.2 Display of the life of the inverter parts (Pr. 255 to Pr .259) .......
77 IPM motor control <IPM> 4 P ARA METERS 4.3 IPM motor control <I PM > Highly effic ient motor co ntrol and hig hly accu rate motor spe ed control c an be perform ed by using the inverter w ith an IPM moto r . The motor sp eed is detec ted by the outp ut volt age and curren t of the inverte r .
78 IPM motor control <IPM> CAUTION · For the setting range of a speed comma nd unde r dedic ated IPM m otor ( MM-E FS 1500r/ min sp ecification, MM- EF 1800 r/min speci fication) controls, re fer to the ou tput freq uency range in Chapter 8.2 Common specification s (Ref er to page 348) .
79 IPM motor control <IPM> 4 P ARA METERS (1) IPM motor control setting by selecting the p arameter setti ng mode on the oper ation p anel () (2) IPM m otor control displa y and IPM motor control signal P .RUN on th e oper ation p anel (FR -DU07 ) is lit and th e IPM mo tor cont rol signa l (IPM) is o utput du ring IPM m otor cont rol.
80 IPM motor control <IPM> 4.3.2 Initializing the pa rameters requi red to drive an IPM motor (Pr . 998) < IP M > * This parameter allo ws its setti ng to be change d in any operation mod e even if "0 (initi al value)" is set in Pr .
81 IPM motor control <IPM> 4 P ARA METERS (2) I PM param ete r in itia liza tion lis t By selecting IPM motor control from the parameter setting mode or with P r .998 IPM parameter initialization , the parameter settings in the following table change t o the settings required to drive an IPM motor .
82 IPM motor control <IPM> [IPM motor specification list] (3) IPM m otor control dedi cated p arameter The following parameters are activated only under IPM motor control. See the reference pages for det ails. 4.3. 3 IP M motor test opera tion (P r .
83 IPM motor control <IPM> 4 P ARA METERS (2) V alid/ invalid st atuses of I/O terminal funct ions during the test operati on 1) Input terminal function selection (Pr .178 to Pr .189) All assignable funct ions are valid. 2) Output term inal fu nction sel ection ( Pr .
84 IPM motor control <IPM> 4.3.4 Adjusting the speed contro l gain (Pr .820, P r .821) < IP M > The abo ve p arameters c an be s et when Pr .
85 IPM motor control <IPM> 4 P ARA METERS · Adjust in the f ollowing procedure: 1) Change the Pr .820 setting while checking the condi tions. 2) If it can not be adjusted well, change Pr .8 21 setting, and perform 1) again. (2) T roubleshoot ing No.
86 IPM motor control <IPM> 5 Accele ration/dec elerat ion time is dif feren t from the sett ing. (1) T orq ue shor tag e (2) Load inertia is too hi gh. (1) Raise t he stall prevent ion oper ation lev el. (Refer to page 91 .) (2) Set accelerati on/deceleratio n time suitable for the load.
87 Adju stment of the output torque (current) o f the motor 4 P ARA METERS 4.4 Adjustment of the output torque (cur rent) of the mo tor 4.4.1 Manual torque boost (Pr . 0, Pr . 46) <V/ F> (1) St arting tor que adjustment ⋅ On the assumption that Pr .
88 Adjus tment of t he o utput tor que ( cur rent ) of t he moto r CAUTION ⋅ Increase the setting when the dist ance between the inverter and motor is long or when motor torque is insuf ficient in the low- speed r ange. If th e setting is t oo large, an overc urrent trip may occur.
89 Adju stment of the output torque (current) o f the motor 4 P ARA METERS 4.4.2 Simple magnetic flux ve ctor control (Pr .80, Pr .90) <S M FVC > The above p aramete rs can be set when Pr . 160 User group r ead selectio n = "0". (Refer to page 201 ) (1) Automatically control optimum t orque (Pr .
90 Adjus tment of t he o utput tor que ( cur rent ) of t he moto r 4.4.3 Slip compens ation (Pr . 245 to Pr . 247) <V/ F><S MF V C > ⋅ Slip compensation is va lidated when the motor rated slip calculated by the fol lowing formula is set in Pr .
91 Adju stment of the output torque (current) o f the motor 4 P ARA METERS 4.4.4 Stall pre vention operation (Pr . 22, Pr . 23, Pr . 48, Pr . 49, Pr . 66, Pr . 148, Pr . 149 , Pr . 154, Pr . 156, Pr . 157) The above p aramete rs can be set when Pr . 160 User group r ead selectio n = "0".
92 Adjus tment of t he o utput tor que ( cur rent ) of t he moto r (2) St all prev ention operati on signal output and output timing adj ustment (OL signal, Pr .
93 Adju stment of the output torque (current) o f the motor 4 P ARA METERS (4) Set multiple st all prevention oper ation levels (Pr . 48, Pr . 49 ) ⋅ Setting "9999" in Pr . 49 Second stall prevention operation fr equency and turning the RT signal ON make Pr .
94 Adjus tment of t he o utput tor que ( cur rent ) of t he moto r (6) T o further prevent a trip ( Pr . 154) <V/ F><S M FVC> ⋅ When Pr .
95 Adju stment of the output torque (current) o f the motor 4 P ARA METERS CAUTION Do not set a small value a s the stall prevention operation current. Otherwise, torque generated will reduce. Always perform test operation. S t all prevention operation during acceleration may in crease the acceleration time.
96 Limiti ng the ou tput frequ ency 4.5 Limiting the outpu t fr equenc y 4.5.1 Maximum/ minimum frequenc y (Pr . 1, Pr . 2, Pr . 18) *1 The paramet ers can be set when Pr . 160 User group r ead selection = "0". (Refer to pag e 201) *2 Performing IPM p arameter ini tialization chan ges the sett ings.
97 Limiting the outp ut frequ ency 4 P ARA METERS (2) Set minimum frequency ⋅ Use Pr . 2 Mini mum f requency to set the lower limit of the output frequency . ⋅ The output frequency is clamped by the Pr . 2 setting even the set fr equency is lower than the Pr .
98 V/F patte rn 4.6 V/F pa tter n 4.6.1 Base frequency , voltage (Pr . 3, P r . 19, Pr . 47) <V/ F><S M FV C> * The parameters can be s et when Pr . 160 Us er group read selection = "0" (Refer to page 201 ) (2) Set multiple ba se frequencies (Pr .
99 V/F patte rn 4 P ARA METERS (3) Base frequency volt age setting (Pr . 19) ⋅ Use Pr . 19 Base fr equency voltage to set the base volt age (e.g. rated motor voltage). ⋅ If the setting is equal to or less than the po wer supply voltage, the maximum output v oltage of the inverter is as set in Pr .
100 V/F patte rn 4.6.2 Load pattern selection (Pr . 14) <V/ F> Y ou can select the optimum output characteristic (V/F charac teristic) for the application and load characteristi cs.
101 V/F patte rn 4 P ARA METERS 4.6.3 Adjustable 5 poi nts V/F (Pr . 71, Pr . 100 to Pr . 109) <V/ F> The above p aramete rs can be set when Pr .
102 Frequen cy setting by ex ternal terminals 4.7 F r equency set ting by e x ter nal ter minals 4.7.1 Multi-spe ed setting operati on (Pr . 4 to P r . 6, Pr . 24 t o Pr . 27, Pr . 232 to Pr . 23 9) The above p arameters allow their se ttings to be changed during o peration in any operation mode even if "0" (initial value) is s et in Pr .
103 Frequency set ting by exte rnal termin als 4 P ARA METERS (2) Multi-speed setti ng higher th an speed 4 ( Pr . 24 to Pr . 27, Pr . 232 to Pr . 239) ⋅ Frequ ency fr om spee d 4 to speed 1 5 can be set ac cord ing to the com binatio n of th e RH, R M, RL a nd REX signals .
104 Frequen cy setting by ex ternal terminals 4.7.2 Jog operation (Pr . 15, Pr . 16) The above p aramete rs are display ed as simple mode par ameters on ly when the p arameter u nit (FR-PU04 /FR-PU07) is connected . When the operation p anel (FR-DU07 ) is connecte d, the abov e paramete rs can be set onl y when Pr .
105 Frequency set ting by exte rnal termin als 4 P ARA METERS (2) Jog operation from PU ⋅ Set the PU (FR-DU07 /FR-P U04 /FR-PU07) to the jog operation mode. Operation is performed only while the start button is pressed. CAUTION ⋅ The Pr . 1 5 setti ng shoul d be equa l to or higher than the Pr .
106 Frequen cy setting by ex ternal terminals 4.7.3 Input compensation of multi-speed and remote setting (Pr . 28) The abo ve p arameters c an be s et when Pr . 160 User group r ead selecti on = "0". (Re fer to page 201 ) 4.7.4 Remote setting function (Pr .
107 Frequency set ting by exte rnal termin als 4 P ARA METERS (1) Remote setting function ⋅ Use Pr . 59 to select whether to us e the remote setting function or not and whether to use the frequency setting storage function in the remote setting mode or not.
108 Frequen cy setting by ex ternal terminals REMARKS During jog operation or PID control operation, the remote setting function i s invalid. ⋅ Even wh en the remo tely-set freque ncy is clear ed by.
109 Setting of acceleration/deceleration time and a cceleration/d eceleration pattern 4 P ARA METERS 4.8 Setting of acc eleration/de celeration tim e and accelerati on/decelera tion patte r n 4.8.1 Setting of the acceler ation and decele rat ion time (Pr .
11 0 Setting of acceleration/de celeration tim e and acceleration/d eceleration pattern (2) Deceleration time setti ng (Pr .8, Pr .20) ⋅ Use Pr . 8 Deceleration time to set the deceleration time r equired to re ach 0Hz fr om P r . 20 Acceleration/deceleration re f e re n c e f req u e nc y .
111 Setting of acceleration/deceleration time and a cceleration/d eceleration pattern 4 P ARA METERS (4) Setting multiple acceleration/ deceleration t ime (RT signal, Pr .44, Pr .45, Pr . 147 ) ⋅ The Pr .44 and Pr .4 5 settings become valid when the RT signal turns ON or the output frequency reaches the value of Pr .
11 2 Setting of acceleration/de celeration tim e and acceleration/d eceleration pattern (5) Setting the acceler ation/deceler ation ti me in the l ow-speed range (Pr .791, Pr .792) If torque is required in the low-speed range (rated motor frequency ( Refer t o page 81 ) /10), set the Pr .
11 3 Setting of acceleration/deceleration time and a cceleration/d eceleration pattern 4 P ARA METERS 4.8.2 S tarting frequency and start-t ime hold function (Pr .13, Pr .571) <V/ F><S M FVC> The abo ve p arameters c an be s et when Pr . 160 User group r ead selecti on = "0".
11 4 Setting of acceleration/de celeration tim e and acceleration/d eceleration pattern 4.8.3 Minimum motor rotati on frequency (P r .13) <I PM > The above p arameters can be set when Pr .160 User group read selection = "0." (Refer to page 201 .
11 5 Setting of acceleration/deceleration time and a cceleration/d eceleration pattern 4 P ARA METERS 4.8.4 Acce leration/decele ration patter n (Pr .29, Pr .140 to P r .143) The abo ve p arameters c an be s et when Pr . 160 User group r ead selecti on = "0".
11 6 Setting of acceleration/de celeration tim e and acceleration/d eceleration pattern (3) S-patter n accelerati on/deceleration B ( Pr . 29 = "2") ⋅ For prevention of load shifti ng in conveyor and other applications.
11 7 Selecti on and p rotec tion of a motor 4 P ARA METERS 4.9 Selection and p r otection of a m otor 4.9.1 Motor protection from overheat (Elec tronic thermal rela y function) (Pr .
11 8 Selecti on and protec tion of a motor (2) Electronic thermal relay of I PM motor contro l (Pr .9) This function detects the overload (overheat) of the motor and trips the inverter by stopping the operation of the transistor at the inverter output side.
11 9 Selecti on and p rotec tion of a motor 4 P ARA METERS (3) Electronic thermal rel ay function operati on characteristic (THT) Electronic thermal relay function (transis tor protection thermal) operation characteristics of the inverter when the ratio of the motor current to the inverter rated current is pres ented as transverse is shown.
120 Selecti on and protec tion of a motor (4) Set multiple e lectronic t hermal relay functions (Pr . 51) (5) Electronic thermal relay function plea larm (TH) and alarm signal (THP signal) (6) External thermal relay input (O H signal) Use this function when rotating two motors of dif ferent rated currents individually by a single inverter .
121 Selecti on and p rotec tion of a motor 4 P ARA METERS (7) PTC thermistor input (PTC signal) Built-in P TC thermistor of the motor can be input to the PTC signal (AU terminal). ⋅ For the terminal used fo r PTC signal in put, assign the function by setting "63" in Pr .
122 Selecti on and protec tion of a motor 4.9.2 Applied motor (Pr . 71) The abo ve p arameters c an be s et when Pr . 160 User group r ead selecti on = "0". (Refer to page 201 ) * Performing IPM par ameter initializ ation chang es the settings.
123 Motor b rake an d stop ope ration 4 P ARA METERS 4.10 Motor brak e and stop operation 4.10.1 DC injection brake of gene ral-purpose motor control (Pr . 10 to Pr . 12) <V/ F><S M FV C > The above p aramete rs can be set when Pr . 160 User group r ead selectio n = "0".
124 Motor brake an d stop op eratio n 4.10.2 DC injection br ake of IPM m otor control ( Pr .10, Pr .1 1) <I PM > (1) Coasting frequency setting (Pr .1 0) When frequency at which coasting st arts is set i n Pr .10 , output is shutoff when this frequency is reached during deceleration and motor starts coasting.
125 Motor b rake an d stop ope ration 4 P ARA METERS 4.10.3 Selection of a rege nerative brake and DC feeding (Pr . 30, Pr . 70) The above p aramete rs can be set when Pr . 160 User group r ead selectio n = "0". (Refe r to page 201) *1 Pr .30 can be set to "1, 1 1, or 21 " for 75 K or hi ghe r .
126 Motor brake an d stop op eratio n (1) W hen the brake unit (FR-BU2, BU, FR-BU) is used (55K or lower) ⋅ Set Pr . 3 0 = "0 (initial setting), 10, or 20" for the FR-B U2 operation with GZG/GRZG/FR-BR, or the BU/FR-BU operation. The Pr . 70 setting is invalid.
127 Motor b rake an d stop ope ration 4 P ARA METERS (6) DC feeding mode 2 ( Pr . 30 = "20, 21") ⋅ When "20 or 21" is set in Pr . 30 , operation is performed with A C power supply normally and with DC power supply such as battery at power failure.
128 Motor brake an d stop op eratio n ⋅ Operation example 1 at power failure ⋅ Operation example 2 at power failure (when DC power is restored) ⋅ Operation example 3 at power failure (when conti.
129 Motor b rake an d stop ope ration 4 P ARA METERS (7) Power supply specification at DC feeding (8) Regenerative brake duty alarm output and alarm signal (RBP signal) (75K or h igher) 200V c las s R.
130 Motor brake an d stop op eratio n 4.10 .4 Stop sele ction (P r . 2 50) The abo ve p arameters c an be s et when Pr . 160 User group r ead selecti on = "0". (Refer to page 201 ) Used to select the stopping method (deceleration to a stop or coasting) when the st art signal turns OFF .
131 Motor b rake an d stop ope ration 4 P ARA METERS 4.10.5 Out put stop function (Pr .522) ⋅ When both of the frequency setting signal and output frequency falls to the frequenc y set in Pr . 52 2 or lower , the inverter stops the output and the motor coast s to a stop.
132 Motor brake an d stop op eratio n REMARKS ⋅ Motor co asts wh en the c omma nd va lue dro ps to Pr .5 22 or lower whi le the star t signal is ON . If t he comm and value exceed s Pr .522 +2Hz aga in while coa sting, th e motor starts running at Pr .
133 Function a ssignment of e xternal termi nal and c ontro l 4 P ARA METERS 4.11 Function assignment o f e xter nal ter minal and control 4.1 1.1 Input terminal function selection (Pr . 178 to Pr . 189) The above p aramete rs can be set when Pr . 160 User group r ead selectio n = "0".
134 Funct ion a ssign ment of ex ternal termina l and control *1 W hen Pr . 59 Remote func tion sele ctio n ≠ "0", the f unction s of th e RL, RM a nd RH sig nals c hange as l isted above. *2 The OH signal tu rns ON when the rela y contact "opens".
135 Function a ssignment of e xternal termi nal and c ontro l 4 P ARA METERS (2) Response time of each si gnal ⋅ The response time of the X10 signal i s within 2ms.
136 Funct ion a ssign ment of ex ternal termina l and control 4.1 1.2 Inver ter output shutoff signal (MRS signal, Pr . 17) (3) Assign a di fferent act ion for eac h MRS signal input fr om communication and external terminal ( Pr . 17 = "4") ⋅ When Pr .
137 Function a ssignment of e xternal termi nal and c ontro l 4 P ARA METERS 4 .1 1. 3 Condition selection of function validity by the second function selection signal (R T) (R T signal, Pr . 155) ⋅ When the R T signal turns ON, the second function becomes valid.
138 Funct ion a ssign ment of ex ternal termina l and control 4.1 1.4 S tart s ignal selec tion (STF , STR, ST OP signal, Pr . 250) The abo ve p arameters c an be s et when Pr . 160 User group r ead selecti on = "0". (Refer to page 201 ) (1) 2-wire type (STF , STR signal) ⋅ A two-wire type connection is shown below .
139 Function a ssignment of e xternal termi nal and c ontro l 4 P ARA METERS (2) 3-wire type (STF , STR, STOP signal) ⋅ A 3-wire type connection is shown below . ⋅ The start self-holdi ng selection becomes valid when the S TOP signal is turned ON.
140 Funct ion a ssign ment of ex ternal termina l and control 4.1 1.5 Output terminal func tion select ion (Pr . 190 to Pr . 196) (1) Output signal list ⋅ Y ou can set the functions of the output terminals.
141 Function a ssignment of e xternal termi nal and c ontro l 4 P ARA METERS 13 1 13 Y13 Zero current detect ion Output when the outpu t pow er is lower t han the Pr .
142 Funct ion a ssign ment of ex ternal termina l and control (2) Inverter operation ready signal (R Y s ignal) and inver ter runnin g signal ( RUN, RUN3 signal) *1 This signal turn s OFF during power fa ilure or undervolt age. *2 Output is shutof f in conditions like a fault and when the MRS signal is ON.
143 Function a ssignment of e xternal termi nal and c ontro l 4 P ARA METERS (3) Fault output signal (ALM, ALM2 signal) (4) Input MC shutoff si gnal (Y91 si gnal) ⋅ The Y91 signal is output at occurrence of a fault attributable to the fai lure of the inverter circuit or a fault caused by a wiring mist ake.
144 Funct ion a ssign ment of ex ternal termina l and control 4.1 1.6 Detection of output frequency (SU, FU, FU2 signal, Pr . 41 to Pr . 43, Pr . 50, Pr .
145 Function a ssignment of e xternal termi nal and c ontro l 4 P ARA METERS (3) Speed detection hysteresis (Pr .870) ⋅ This functi on prevent s chatteri ng of the speed det ection sig- nals.
146 Funct ion a ssign ment of ex ternal termina l and control 4.1 1.7 Output current detection function (Y12 signal, Y13 signal, Pr . 150 to Pr . 153, Pr . 166, Pr . 167) The output current during inverter running can be detected and output to the output terminal.
147 Function a ssignment of e xternal termi nal and c ontro l 4 P ARA METERS (2) Zero current detection ( Y13 signal, Pr . 152, Pr . 153, Pr . 167 ) ⋅ If the output current remains lower than the Pr . 1 52 settin g during inverter operation for longer than the time set i n Pr .
148 Funct ion a ssign ment of ex ternal termina l and control 4.1 1.8 Remote output function (REM signal , Pr . 495 to Pr . 497) Y ou c an utilize the ON/OFF of the inverter's output signals instead of the remote output terminal of the programmable controller .
149 Function a ssignment of e xternal termi nal and c ontro l 4 P ARA METERS 4.1 1.9 Pulse train output of output power (Y79 signal, Pr . 799) (1) Pulse increment setting for output power (Y79 si gnal, Pr .
150 Monitor d isplay and monitor out put signa l 4.12 Monitor display and moni tor output signal 4.12.1 Speed display and spe ed setting (Pr . 37, Pr . 144, Pr . 505) The a bov e pa ramet ers can be set when Pr . 160 User group r ead se lection = "0".
151 Monitor display and monitor output signal 4 P ARA METERS CAUTION ⋅ Unde r V/F co ntrol, t he out put frequ ency of the inverter is di splayed in term s of sy nchr onous sp eed, and ther efore, d isplay ed valu e = ac tual spe ed + m otor sli p. ⋅ When t he runni ng spee d displa y is select ed at the setting of Pr .
152 Monit or disp lay and monito r output signal 4.12.2 DU/PU monit or display selection (Pr . 52, Pr . 54, P r . 158, Pr . 170, Pr . 171 , Pr . 268, Pr . 563, Pr . 564, Pr . 891) (1) Monitor description list (Pr . 52) ⋅ Set the monitor to be displayed on the operation panel (FR-DU07) and parameter unit (FR-PU04/FR-PU07) in Pr .
153 Monito r displa y and monito r output signal 4 P ARA METERS Runn ing sp eed 1(r/mi n) 6 *1 6 The va lue conv ert ed wit h the Pr . 37 value from Pr . 55 Dis play s th e mot or spe ed (The display differs depen ding on the Pr . 37 and Pr . 1 44 setting s.
154 Monit or disp lay and monito r output signal *1 Frequency setting to output terminal status on t he PU main monitor are selected by "ot her monitor selection" of the p arameter unit (FR-PU04 , FR-P U07 ).
155 Monito r displa y and monito r output signal 4 P ARA METERS (3) Operation p anel (FR-DU07) I/O terminal mo nitor (Pr . 52) ⋅ When Pr . 52 is s et to any of "55 to 57", th e I/O terminal s tates can be mo nitored on the operation panel (FR -DU07).
156 Monit or disp lay and monito r output signal (4) Cum ulative power monit or and clear (Pr . 170, Pr . 891) ⋅ On the cumulative power monitor ( Pr . 52 = "25"), the output power monitor value is added up and is updated in 1h increment s.
157 Monitor display and monitor output signal 4 P ARA METERS 4.12.3 FM, AM t erminal f unction selec tion (Pr .55, Pr .56, Pr .867 ) (1) Frequency monitoring ref erence (Pr .55) • Set the full scale value when outputting the frequency monitor from terminal FM or AM.
158 Monitor d isplay and monitor out put signa l (2) Current monitoring refere nce (Pr .56) • Set the full scal e value when outputting the current monitor from terminal FM or AM. • For cal ibration of terminal FM, set the full-scale value of the connected current meter when the pulse spe ed of terminal FM is 1440 puls e/s.
159 Monitor display and monitor output signal 4 P ARA METERS 4.12.4 T erminal FM, AM calibra tion (Calibration param eter C0 (Pr . 900), C1 (Pr . 901)) (1) FM terminal cali bration (C0(Pr .900)) ⋅ The terminal FM is preset to output pulses. By setting the Calibrat ion para meter C 0 (Pr .
160 Monitor d isplay and monitor out put signa l (2) AM terminal calibration (C1(Pr .901)) ⋅ Calibrate the AM terminal in the followi ng procedure. 1) Connect a 0-10VDC meter (frequency meter) to across inverter terminals AM and 5. (Note the polarity .
161 Monitor display and monitor output signal 4 P ARA METERS 4.12.5 How to calibrate the termi nal FM when usi ng the operation panel (FR-DU07) Perform the following procedure to cali brate te rminal FM using the operation panel FR-DU07. R efer to page 159 for the details of p arameters.
162 Operati on select ion at pow er failure a nd inst anta neous powe r failure 4.13 Oper ation sel ection a t po wer f ailure and inst antaneous pow er f ailure 4.13.1 Automatic restart after instantaneous power fai lure/flying start under ge neral- purpose m otor control (Pr .
163 Operati on sele ction at power failu re and inst ant aneous power failu re 4 P ARA METERS (1) Automatic rest art af ter inst ant aneous power failure operation ⋅ When Instant aneous power failure pr otection (E.IPF) and undervoltage protection (E.
164 Operati on select ion at pow er failure a nd inst anta neous powe r failure (4) Restart coasting time (Pr . 57) ⋅ Coasting time is the time from when the motor speed is detected until automatic restart control is st arted. ⋅ Set Pr . 57 to "0" to perfor m automatic restart operation.
165 Operati on sele ction at power failu re and inst ant aneous power failu re 4 P ARA METERS CAUTION Provide mechanical interlocks for MC1 and MC2. (Under V/F control or Simple magnetic flux vector control) The inverter will be damaged if the power supply is input to the inverter output section.
166 Operati on select ion at pow er failure a nd inst anta neous powe r failure 4.13.2 Automatic restart after instantane ous power failure/ flying start under IPM motor control ( P r .
167 Operati on sele ction at power failu re and inst ant aneous power failu re 4 P ARA METERS (4) Restar t coasting time (Pr . 57) Coasting time is the time from when the motor speed is detec ted until automatic restart control is st arted. Set Pr .
168 Operati on select ion at pow er failure a nd inst anta neous powe r failure 4.13.3 Power failure signa l (Y67 signal ) When output is shutof f due to a power failure or undervoltage, the Y67 signal turns ON regardless of the automatic restart after ins tantaneous power failure function setting.
169 Operatio n selection at pow er failu re and ins ta ntane ous po wer fail ure 4 P ARA METERS 4.13.4 Pow er failure-t ime decel eration- to-stop functi on (Pr . 2 61 to Pr . 266 ) The above p aramete rs can be set when Pr . 160 User group r ead selectio n = "0".
170 Operati on sele ction at power failu re and in stant aneou s power fa ilure (3) Power failure stop function ( Pr . 261 = "1, 21") ⋅ If power is restored during power failur e deceleration, dec eleration to a stop is continued and the inverter remains stopped.
171 Operatio n selection at pow er failu re and ins ta ntane ous po wer fail ure 4 P ARA METERS (5) Power failure deceleration signa l (Y46 signal) ⋅ After a power failure stop, inverter cannot start even if power is restored and the st art command is given.
172 Operation setting at fault occurrence 4.14 Oper ation set ting a t fau lt occur rence 4.14.1 Retry f unction (Pr . 65, Pr . 67 to Pr . 69) ⋅ Retry operation automatically resets a fault and restarts the inverter at the starting frequency when the time set in Pr .
173 Operation setting at fa ult occurrence 4 P ARA METERS ⋅ Use Pr . 65 to select the fault to be activated for retries. No retry will be made for the fault not indicated. (Refer to page 310 for the fault des cription.) indicates the errors selected for retry .
174 Operation setting at fault occurrence 4.14.2 Fault code output selection (Pr .76) ⋅ By setting Pr . 76 to "1" or "2", the fault code can be output to the output terminals.
175 Operation setting at fa ult occurrence 4 P ARA METERS 4.14.3 Input/output phase loss protection selection (Pr . 251, Pr . 872) (1) Output phase loss protection selection ( Pr . 251) ⋅ When Pr . 251 is set to "0", output phase loss protection (E.
176 Ener gy sa vin g o pera tio n and ener gy s avi ng m onit or 4.15 Ener g y savin g operation and ene r g y saving moni tor 4.15.1 Energy sa ving control and Optimum ex citati on control (Pr . 60) <V/ F> (1) Energy saving operation mode (Setting "4") ⋅ When "4" is set in Pr .
177 Energy saving operation and energy saving monitor 4 P ARA METERS 4.15.2 Energy saving monitor (Pr . 891 to Pr . 899) From the power consumption estima ted value during commercial power supply operation, the energy saving effect by use of the inv erter can be monitored/output.
178 Ener gy sa vin g o pera tio n and ener gy s avi ng m onit or (1) Energy saving monitor l ist ⋅ The following items are monitored by the power saving monito r ( Pr . 52, Pr . 54, Pr . 158 = "50"). (Only 1) Power saving and 3) Power saving average value can be output to Pr .
179 Energy saving operation and energy saving monitor 4 P ARA METERS (2) Power saving inst ant aneo us monitor ( 1) power savings, 2) power sa ving rate ) ⋅ On the power saving monitor ( 1)), an ene.
180 Ener gy sa vin g o pera tio n and ener gy s avi ng m onit or (5) Power estimated value of commercial power supply operation ( Pr . 892, Pr . 893, Pr .
181 Energy saving operation and energy saving monitor 4 P ARA METERS (6) Annual power saving amount, power cost (Pr . 899) ⋅ By setting the operation time rate [%] (ratio of time when t he motor is actually driv en by the inverter duri ng a year) in Pr .
182 Motor nois e, EM I mea sures , m echan ical r esona nc e 4.16 Motor noise, EMI measur es, mec hanical resonance 4.16.1 Carrier frequency and Soft-PWM selection under general-purpose motor contr ol (Pr . 72, P r . 240, P r . 260) <V/ F><S M FVC> (1) PW M carrier frequency changi ng (Pr .
183 Motor nois e, EMI mea sur es, mech ani cal res onan ce 4 P ARA METERS 4.16.2 Carrier frequenc y and Soft-PWM selection under IPM motor control (Pr .72, Pr .240, Pr .260) <I P M > (1) PW M carr ier frequency chan ging (Pr .72) ⋅ Y ou can change the PWM carrier frequency of the inverter .
184 Motor nois e, EM I mea sures , m echan ical r esona nc e 4.16.3 Speed smoothing control (P r . 653, Pr . 654) <V/ F><S M FVC> (1) Control block diagram (2) Setting method If vibration due to mechanical resonance occurs, set 100% in Pr .
185 Frequ ency set ti ng by ana log i n put (t ermi nal 1, 2 , 4 ) 4 P ARA METERS 4.17 F r equenc y setting by analog i nput (ter minal 1 , 2, 4) 4.17.
186 Frequ en cy set ti ng by ana log i n put (t er mina l 1, 2, 4) ⋅ Refer to the following tabl e and set Pr . 73 and Pr . 2 67 . ( indicates the main speed setting) ⋅ Set the voltage /current input switch referring to the table below . AU signal T erminal 4 Inpu t Pr .
187 Frequ ency set ti ng by ana log i n put (t ermi nal 1, 2 , 4 ) 4 P ARA METERS (2) Perform operation by analog input volt age ⋅ The frequency setting signal input s 0 to 5VDC (or 0 to 10V DC) to across the terminals 2 and 5. The 5V (10V) inpu t is the max imum output frequency .
188 Frequ en cy set ti ng by ana log i n put (t er mina l 1, 2, 4) (3) Perform operation by analog input curre nt ⋅ When the pressure or temperature is controlled constant by a fan, pump, etc., automatic operation can be per formed by inputting the output signal 4 to 20mADC of the adjuster to across the terminals 4 and 5.
189 Frequ ency set ti ng by ana log i n put (t ermi nal 1, 2 , 4 ) 4 P ARA METERS 4.17.2 Setting the frequency by analog input (voltage i nput) [Connection diagram] (The inverter supplies 5V of power to fr equency setting potentiometer . (T erminal 10)) POIN T · Switch ON the STF (STR) signal to give a start command.
190 Frequ en cy set ti ng by ana log i n put (t er mina l 1, 2, 4) The motor will not rotate ... Why ? Check that [EXT] is lit. [EXT] is valid when Pr . 79 = "0" (initial value). Use to lit [EXT]. Check that wiring is correct. Check once again.
191 Frequ ency set ti ng by ana log i n put (t ermi nal 1, 2 , 4 ) 4 P ARA METERS 4.17.3 Analog input compensation (Pr . 73, Pr . 242, Pr . 243, Pr . 252, P r . 253) The above p aramete rs can be set when Pr . 160 User group r ead selectio n = "0".
192 Frequ en cy set ti ng by ana log i n put (t er mina l 1, 2, 4) (2) Override function (Pr . 252, Pr . 253) 4.17.4 Response leve l of analog input and noise elimi nation (Pr . 74) The abo ve p arameters c an be s et when Pr . 160 User group r ead selecti on = "0".
193 Frequ ency set ti ng by ana log i n put (t ermi nal 1, 2 , 4 ) 4 P ARA METERS 4.17.5 Bias and gain of frequency s etting voltage (current) (Pr . 125, Pr .
194 Frequ ency set ti ng by ana log i n put (t ermi nal 1, 2 , 4 ) (3) Analog input display unit changing (Pr . 241) ⋅ Y ou can change the analog input display unit (%/V /mA) for analog input bias/gain cali bration. ⋅ Depending on the terminal input speci fication set to Pr .
195 Frequ ency set ti ng by ana log i n put (t ermi nal 1, 2 , 4 ) 4 P ARA METERS 4.17.6 Frequency setting signal (current) bias /gain adjustment method (a)Method to adjust any point by application of v olt age (current) across the terminals 2 and 5 (4 and 5).
196 Frequ ency set ti ng by ana log i n put (t ermi nal 1, 2 , 4 ) (b) Method to adjust any point without applic ation of a voltage (current) to across terminals 2 and 5 (4 and 5). (T o change from 4V (80%) to 5V (100%)) REMARKS By pre ssi ng af te r step 10 , yo u can con fir m the curr ent f reque ncy setti ng bi as/gai n set ting .
197 Frequ ency set ti ng by ana log i n put (t ermi nal 1, 2 , 4 ) 4 P ARA METERS (c) Method to adjust only the frequency without adjustment of a gain volt age (current). (When changing the gain frequency from 60Hz to 50Hz) REMARKS ⋅ Chan ging C4 (Pr .
198 Misopera tion pr evention an d par ameter setting restriction 4.18 Misoper ation pre vention and parameter setting restriction 4.18.1 Reset selection/di sconnected PU detec tion/PU stop selection (Pr . 75) (1) Reset selection • Y ou can select the enable conditi on of reset function (RES signal, reset command through communication) input.
199 Misope ration preventio n and par ameter setting restriction 4 P ARA METERS (2) Disconnected PU detect ion • This function detects that the PU (FR-DU07/FR-PU04/ FR-PU07 ) has been disconnected from the inverter for longer than 1s and causes the inverter to provide a fault output (E.
200 Misopera tion preve ntion and param eter setting restriction 4.18.2 Para meter write selecti on (Pr . 77) (1) Write p arameters only at a stop (setting "0", init ial value) ⋅ Parameters can be written only during a stop in the PU operation mode.
201 Misope ration preventio n and par ameter setting restriction 4 P ARA METERS 4.18.3 Reverse rotation pre vention selection ( Pr . 78) ⋅ Set this parameter when you want to limit the motor rotati on to only one direction.
202 Misope ration prevent ion a nd p arame ter setting restriction (2) User group function ( Pr . 160, Pr . 172 to Pr . 174 ) ⋅ The user group function is designed to display only the p arameters necessary for setting. ⋅ From among all parameters, a maximum of 16 parameters can be regis tered to a user gr oup.
203 Misopera tion pr evention a nd p arameter setting restriction 4 P ARA METERS 4.18.5 Password func tion (Pr . 296, Pr . 297) *1 This paramet er can be set when Pr . 160 User group r ead se lection = "0". *2 If Pr . 29 6 = "9999" (no passw ord lock), Pr .
204 Misoper ation p revention and p arameter setting restriction (2) Password lock/unlock ( Pr .296, Pr .297 ) <Lock> 1) Set paramet er reading/wr iting re striction level.
205 Misopera tion pr evention a nd p arameter setting restriction 4 P ARA METERS (3) Parameter operation during p assword lock/unloc k *1 Reading/writing is una vailable when t here is restri ction to reading by the Pr . 160 setting. (Readin g is available in NET mode regard less of Pr .
206 Selecti on of operat ion mo de and operatio n locati on 4.19 Selection of operation mode and opera tion loca tion 4.19.1 Operation mode s election (Pr .
207 Selecti on of op eratio n mode a nd operatio n location 4 P ARA METERS (1) Operation mode basics (2) Operation mode switching method ⋅ The operation mode specifies the source of the start command and the frequency command for the invert er . ⋅ Basically , there are following operation mo des.
208 Selecti on of operat ion mo de and operatio n locati on (3) Operation mode selection flow In the following flowchart, se lect the basic p arameter setti ng and term inal conne ction re lated to the op erat ion mode.
209 Selecti on of op eratio n mode a nd operatio n location 4 P ARA METERS (4) External operation mode (s etting "0" (i nitial value ), "2") (5) PU operation mode ( setting " .
210 Selecti on of operat ion mo de and operatio n locati on (6) PU/External combined operation mode 1 (setting "3") (7) PU/External combined operation mode 2 (setting "4") ⋅ Sele.
21 1 Selecti on of op eratio n mode a nd operatio n location 4 P ARA METERS (8) Switch-over mode (Setting "6" ) ⋅ While continuing operation, you can switch among PU operation, External operation and Network operation (when RS-485 terminals or communication option is used).
212 Selecti on of operat ion mo de and operatio n locati on (10) Switching of operati on mode by external signal (X16 signal) ⋅ When external operation and operation from the operation panel are use.
213 Selecti on of op eratio n mode a nd operatio n location 4 P ARA METERS (1 1) Switching of operation mode by external signal ( X65, X66 signals) ⋅ When Pr .
214 Selecti on of operat ion mo de and operatio n locati on 4.19.2 Se tting the set fre quency to operate (example: performing opera tion at 30Hz) POIN T Operation panel (FR-DU07) is used to give bot h of frequency and st art commands in PU operation.
215 Selecti on of op eratio n mode a nd operatio n location 4 P ARA METERS 4.19.3 Setting the frequency by the operation panel (Pr . 79 = 3) [Connection diagram] Ope ratio n can not be perfo rmed at the set fre quen cy .
216 Selecti on of operat ion mo de and operatio n locati on 3. Running frequ ency setting Turn to s how the select ed frequency , " " (30.00Hz). The f requency flickers f or about 5s. While the value is flickering, press to s et the frequency .
217 Selecti on of op eratio n mode a nd operatio n location 4 P ARA METERS 4.19.4 Setting the frequency by analog input (voltage i nput) [Connection diagram] (The inverter supplies 5V of power to the frequency setting potentiometer .(T erminal 10) ) POIN T · Use or on the operation panel (FR-DU07) to give a start command.
218 Selecti on of operat ion mo de and operatio n locati on 4.19 .5 Ope rat ion mode at po wer -ON (P r . 79, P r . 340) (1) Specify operation mode at power-ON (P r . 340) ⋅ Depending on the Pr . 79 and Pr . 340 settings, the oper ation mode at power-ON ( reset) chan ges as describe d below .
219 Selecti on of op eratio n mode a nd operatio n location 4 P ARA METERS 4.19.6 Star t command source a nd speed comm and source during communication operation (Pr . 338, Pr . 339, Pr . 550, Pr . 551) (1) Select the command source of the Network operation mode (Pr .
220 Selecti on of operat ion mo de and operatio n locati on (3) Controllability through communi cation *1 A s set in Pr . 338 Communication operation co mmand source and Pr . 339 Communi catio n speed command source . (Refer to p age 2 19) *2 At occurre nce of RS-485 commun ication err or , the inverter can not be reset fro m the computer .
221 Selecti on of op eratio n mode a nd operatio n location 4 P ARA METERS (4) Operation at error occurrence *1 Can be s ele ct ed us ing Pr . 75 Reset select ion/disco nnected PU detection/PU stop se lection *2 Ca n be sele cted us ing Pr . 122 PU communication check time interval , Pr .
222 Selecti on of operat ion mo de and operatio n locati on (5) Selection of command source in Network operation mode (Pr . 338, Pr . 339) ⋅ There ar e two control so urces: operation co mmand so ur.
223 Selecti on of op eratio n mode a nd operatio n location 4 P ARA METERS (6) Switching of command sou rce by exter nal termin al (X67) ⋅ In Network operation mode, the command source switchin g signal (X67) can be us ed to switch the st art command source and speed command sourc e.
224 Communi cation operat ion and setting 4.20 Communicatio n operation an d setting 4.20.1 Wiring and configuration of PU conne ctor Using the PU connector , you can perform communication operation from a personal computer etc.
225 Communica tion operat ion and settin g 4 P ARA METERS (2) PU connector communication syst em configuration and wiring z System configu ration z Connection with RS-485 computer * Make connection s in accordanc e with the manua l of the c omputer used.
226 Communi cation operat ion and setting 4.20.2 Wiring and configuration of RS-485 termi nals (1) RS-485 terminal layout (2) Connection of RS-485 terminals and wires Loosen the terminal screw and insert the cable into the terminal .
227 Communica tion operat ion and settin g 4 P ARA METERS (3) RS-485 terminal s ystem configurat ion z Connection of a computer t o the inve rter (1: 1 connection) z Combination of computer and multi .
228 Communi cation operat ion and setting (4) RS-485 terminal wiri ng method z Wiring of one RS-485 comp uter and one inverter z Wiring of one RS-485 comp uter and "n" inverters (sever al inverters) *1 Make connections in acc ordance with th e manual of the comput er used.
229 Communica tion operat ion and settin g 4 P ARA METERS 4.20.3 Initial sett ings and speci fications of RS-485 communica tion (Pr . 1 17 to P r . 124, Pr . 33 1 to P r . 337, P r . 341, Pr . 549) [PU connector communication r elated par ameter] Used to perform required settings for communication between the inverter and personal computer .
230 Communi cation operat ion and setting [RS-485 terminal communication rel ated p arameter] 4.20.4 Communi cation EEPRO M write sele ction (Pr . 342) ⋅ When changing the p arameter values frequently , set "1" in Pr . 342 to write them to the RAM.
231 Communica tion operat ion and settin g 4 P ARA METERS 4.20. 5 Operation selec tion at communica tion error (Pr .502 , Pr .779) For communication using RS -485 terminals or a communic a tion option, operation at a communic ation error can be selected.
232 Communi cation operat ion and setting ⋅ Select the stop operation at the retry count excess ( Pr . 335 , only with Mitsubishi inverter protocol) or at a signal loss detection ( Pr . 336 , Pr . 539 ). ⋅ Operation at an error ⋅ Operation after the error is removed * E.
233 Communica tion operat ion and settin g 4 P ARA METERS REMARKS ⋅ Fault output indicates the fault output signal (ALM signal) and an alarm bit output. ⋅ When the fault output setting is active, a fault record is saved in the faults history . (A fault record is written to the fault s hist ory at a fault out put.
234 Communi cation operat ion and setting 4.20.6 Mitsubishi inver ter protocol (computer link comm unication) (1) Com munication specifi cations ⋅ The communication specifications are giv en below . (2) Com munication procedur e *1 If a dat a erro r is de tected and a retry mu st be made , execut e retry operati on with the use r progr am.
235 Communica tion operat ion and settin g 4 P ARA METERS (3) Com munication operation presence/absence and dat a format types ⋅ Data communic ation between the computer and inverter is made in ASCII code (hexadecimal code).
236 Communi cation operat ion and setting Data reading f ormat Communi cation req uest data from the c omputer t o the inverter 1) Reply da ta from the inve rter to the c omputer 3 ) (No dat a err.
237 Communica tion operat ion and settin g 4 P ARA METERS (4) Data defi nitions 1) Control codes 2) Inverter station number S pecify the st ation number of the inverter which communicates with the computer . 3) Instruction code S pecify the proces sing reques t, e.
238 Communi cation operat ion and setting 7) Error Code If any error is found in the data received by the inverter , its definition is sent back to the computer .
239 Communica tion operat ion and settin g 4 P ARA METERS (6) Retry count sett ing ( Pr . 121, Pr . 335 ) ⋅ Set the permissible number of retries at occurrence of a data receiv e error .
240 Communi cation operat ion and setting (8) Instructions for the pr ogram 1) When data from the computer has any error , the inverter does not accept that dat a. Hence, in the user program, always insert a retry program for data error . 2) All data c ommunication, e.
241 Communica tion operat ion and settin g 4 P ARA METERS General flowchart Port open Communication setting Time ou t s etti ng Send data processing Data s etting Sum code calc ulation Dat.
242 Communi cation operat ion and setting (9) Setting items and set dat a After completion of parameter setting, set the instruction codes and dat a then start c ommunication from the computer to allow various types of operation control and monitoring.
243 Communica tion operat ion and settin g 4 P ARA METERS Example) When reading the C3 (Pr . 902) and C6 (Pr . 904) settings from the inverter of station No. 0 T o read/w rite C3 (Pr . 902) and C6 (Pr . 904) af ter in verter r eset or p aramete r clear , execut e from 1) again .
244 Communi cation operat ion and setting List of calibrati on parameters [Special monitor selection No .] Refer to page 152 for details of the monitor descripti on. ......... ...... S pecifications di ffer according to the date as sembled . Refer to page 378 to che ck the SE RIAL num ber.
245 Communica tion operat ion and settin g 4 P ARA METERS [Fault data] Refer to page 309 for det ails of fault description. [Run command] *1 The signal within p arenthes es is the initi al setting. The de scription c hanges depe nding on the sett ing of Pr .
246 Communi cation operat ion and setting [Inverter status monito r] * The signal wit hin parenthes es is the initial settin g. The descriptio n changes depend ing on the setting of Pr .
247 Communica tion operat ion and settin g 4 P ARA METERS 4.20. 7 Modbus-RTU com munication specifi cations (Pr . 331, Pr . 332, Pr . 334, Pr . 343, Pr . 539, Pr . 549, Pr . 779) Using the Modbus-RTU communication protocol, c omm unication operation or parameter s etting can be performed from the RS-485 terminals of the inverter .
248 Communi cation operat ion and setting (1) Com munication specifi cations ⋅ The communication specifications are giv en below . (2) Outline The Modbus protocol is the communication protocol developed by Modi con for programmable controller .
249 Communica tion operat ion and settin g 4 P ARA METERS (3) Message format Data chec k time 1) Query The master sends a message to the slave (= inverter) at the specified address.
250 Communi cation operat ion and setting (4) Message frame (protocol) Communication method Basically , the master sends a query message (question) and the sl ave returns a response message (response).
251 Communica tion operat ion and settin g 4 P ARA METERS (5) Message format types The message formats corresponding to the func tion codes in T able 1 on page 250 will be explained.
252 Communi cation operat ion and setting Write multiple holding register data (H06 or 06) Y ou can write the description of 1) system env ironment variables and 4) inverter parameters assigned to the holding register area (refer to the register list (page 25 6) ).
253 Communica tion operat ion and settin g 4 P ARA METERS Function diagno sis (H08 or 08) A communication check is available since the query message sent is returned unchanged as a response message (function of subfunction code H00).
254 Communi cation operat ion and setting ⋅ Description of normal response 1) to 4) (including CRC check) of the normal response are the same as those of the query message. Read holding register access log ( H46 or 70) A response can be made to a query made by the function c ode H03 or H10.
255 Communica tion operat ion and settin g 4 P ARA METERS Error response An error response is returned if the query message received from the master has an illegal function, address or data. No response is returned for a p arity , CRC, overrun, framing or busy error .
256 Communi cation operat ion and setting (6) Modbus registers System environment variable *1 The communicatio n paramete r values are not c leared. *2 For write, set the data as a control input ins truction. For read, dat a is read as an inver ter operating s tatus.
257 Communica tion operat ion and settin g 4 P ARA METERS *1 The setting de pends on cap acities . (55K or lower/7 5K or higher) *2 Input terminal monit or detai ls *3 Output term inal monito r det ails *5 Option input terminal 1 monit or deta ils (input termina l status of FR-A7AX) All OFF if opt ion is not inst alled.
258 Communi cation operat ion and setting Par ame ter Faults history Fault code lis t Parameters Register Paramete r Name Read/W rite Remarks 0 to 999 41000 to 41999 Refer to t he param eter list (pag e 64) for the param eter name s. Read/write The parameter num ber + 410 00 is the regi ster numb er .
259 Communica tion operat ion and settin g 4 P ARA METERS Model information monito r ............... Specifications differ according to the da te assem bled. R efer to page 378 to check the S ERIAL num ber. (7) Pr . 34 3 Communication err or count Y ou can check the cumulative number of communication errors.
260 Communi cation operat ion and setting (9) Signal loss detection ( Pr . 539 Modbus-RTU communication check time i nterval ) If a signal loss (communication s top) is detected between the i nverter and master as a result of a signal loss detection, a communication error (E.
261 Spec ial oper atio n and freq uenc y cont rol 4 P ARA METERS 4.21 Special ope r ati on and frequenc y control 4.21. 1 PID control (Pr . 12 7 to Pr .
262 Spec ial oper atio n and freq uenc y cont rol (1) PID control basic configuration ⋅ Pr . 128 = "10, 1 1, 1 10, 1 1 1" (Deviation value signal input) ⋅ Pr . 128 = "20, 21, 120, 121" (Measured value input) 241 *1 Analog inp ut display unit switchove r 0 0 Display ed in % Sele ct the un it of analo g inpu t dis play .
263 Spec ial oper atio n and freq uenc y cont rol 4 P ARA METERS (2) PID action overview 1) PI a ction 2) PD action 3) PID action A combination of P action (P) and I action (I) for prov iding a manipulated variable in response to deviation and changes with time.
264 Spec ial oper atio n and freq uenc y cont rol 4)Reverse action Increases the manipulated variable (output frequency) if devia tion X = (set point - measured value) is positiv e, and decreases the manipulated variabl e if deviation is ne gative.
265 Spec ial oper atio n and freq uenc y cont rol 4 P ARA METERS (4) I/O signals and p arameter setting ⋅ T urn ON the X14 signal to perform PID control. When this signal is OFF , PID action is not performed and normal inverter operation is perform ed.
266 Spec ial oper atio n and freq uenc y cont rol (5) PID control automatic switchover control (P r . 127) ⋅ The inverter can be started up without PID control mode only at a start.
267 Spec ial oper atio n and freq uenc y cont rol 4 P ARA METERS (7) PID output suspension function (SLEEP function) (SLEEP signal , Pr . 554 , Pr . 575 to Pr . 577 ) ⋅ The inverter stops operation if the output frequency after PID control remains at less than the Pr .
268 Spec ial oper atio n and freq uenc y cont rol (8) PID m onitor funct ion ⋅ The PID control set value, measured value and deviation value can be displayed on the operation panel and output from terminal FM, AM. ⋅ Integral value indicating a negative % can be displayed on the deviation monitor .
269 Spec ial oper atio n and freq uenc y cont rol 4 P ARA METERS (10) Calibra tion example (A detector of 4mA at 0 ° C and 20mA at 50 ° C is used to adjust the room temperature to 25 ° C under PID control. The set point is given to across inverter terminals 2 and 5 (0 to 5V).
270 Spec ial oper atio n and freq uenc y cont rol <Set point input cal ibration> 1) Setting with term inal 2 input 1. Apply the input volt age of 0% set point setting (e.g. 0V) across terminals 2 and 5. 2. Enter in C2 (Pr . 902) the frequency which should be output by the inv erter at the deviation of 0% (e.
271 Spec ial oper atio n and freq uenc y cont rol 4 P ARA METERS CAUTION ⋅ If the m ulti-spe ed (RH, RM, R L sign al) or Jog ope ratio n (JOG signa l) is ent ered w ith the X1 4 signa l ON, PID control is stopp ed and mult i-spee d or jog opera tion is starte d.
272 Spec ial oper atio n and freq uenc y cont rol (1 1) Bias and gain calibration for PID display ed values ( C42(Pr . 934) to C45(Pr . 935) ) ⋅ When both of C42(Pr .934) and C44( Pr .935) ≠ " 9999", bias/gain calibration is available for analog val ue of set point, measured value, deviation value to pe rform PID control.
273 Spec ial oper atio n and freq uenc y cont rol 4 P ARA METERS ⋅ T ake caution when the following condition i s satisfi ed because the inverter recogniz es the deviation value as a negative (positive) value even though a pos itive (negative) deviation is given: Pr .
274 Spec ial oper atio n and freq uenc y cont rol 4.21.2 Bypass-inve rter switchover function (pr . 57, Pr . 58, Pr . 135 to Pr . 139, Pr . 159) <V/ F><S M FV C > ⋅ When the motor is operated at 60Hz (or 50Hz), more efficient operation can be performed by the commercial power supply than by the inverter .
275 Spec ial oper atio n and freq uenc y cont rol 4 P ARA METERS (1) Connection diagram ⋅ The following shows the connection diagram of a typical electronic bypass sequence. Sink logic, Pr . 185 = "7", Pr . 192 = "17", Pr . 193 = "18", Pr .
276 Spec ial oper atio n and freq uenc y cont rol ⋅ The input signals are as indicated below . ⋅ The output signals are as indicated below . Signa l T ermin al Us ed Function Operatio n MC Oper atio n *6 MC1 *5 MC2 MC3 MRS MRS Oper ation enabl e/disabl e select ion *1 ON .
277 Spec ial oper atio n and freq uenc y cont rol 4 P ARA METERS (2) Electronic byp ass operation sequence ⋅ Operation sequence example when there is no automatic switchover sequence ( Pr . 139 = "9999") ⋅ Operat ion seq uence exam ple when the re is auto matic switchover s equenc e ( Pr .
278 Spec ial oper atio n and freq uenc y cont rol (3) Operating procedure ⋅ Procedure for operation Operation pattern 2) Signal ON/OFF after p arameter setting MRS CS STF MC1 MC2 MC3 Remar ks Power .
279 Spec ial oper atio n and freq uenc y cont rol 4 P ARA METERS 4.21.3 Regeneration avoidanc e function (P r . 665, Pr . 88 2 to Pr . 886) (1) W hat is regenerat ion avoidance function ? (Pr . 882, Pr . 883) ⋅ When the regeneration status is serious, the DC bus voltage rises and an overvolt age fault (E.
280 Spec ial oper atio n and freq uenc y cont rol (2) T o detect the r egeneration st atus during decele ration fast er (P r . 884) ⋅ As the regeneration avoi dance function cannot respond to an abr.
281 Useful func tions 4 P ARA METERS 4.22 Usefu l functi ons 4.22.1 Cooling fan operation selection (Pr . 244) ⋅ In either of the following cases, fan operation is regar ded as faulty , [FN] is shown on the operation panel, and the fan alarm output (F AN) and alarm (LF ) signals are output.
282 Useful func tions 4.22.2 Display of the l ife of the inv erter part s (Pr . 255 to Pr .25 9) Degrees of deterioration of main circuit c apacitor , contro l circuit cap acitor , cooling fan and inrush current limit circuit can be diagnosed by monitor .
283 Useful func tions 4 P ARA METERS (1) Life alarm display and signal output (Y90 signa l, Pr . 255 ) ⋅ Whether any of the control circuit capacitor , main circuit capacitor , co oling fan and inrush current limit circuit has reached the life alarm ou tput level or not can be checked by Pr .
284 Useful func tions (4) Main circuit cap acitor li fe display (Pr . 258, Pr . 259) ⋅ The deterioration degree of the main circuit cap acitor is displayed in Pr . 258 as a life. ⋅ On the assumption that the main circuit c apacitor cap acitance at fac tory shipment is 100%, the capacitor life is displayed in Pr .
285 Useful func tions 4 P ARA METERS 4.22. 3 Maintenance t imer alarm (Pr . 50 3, Pr . 504) ⋅ The cumulative energization ti me of the inverter is stored into the EEPROM ever y hour and indicated in Pr . 503 Maintenance timer in 100h inc rements. Pr .
286 Useful func tions 4.22.4 Current av erage value monitor signal ( Pr . 555 to Pr . 557) ⋅ The pulse output of the current average value monitor signal (Y93) is shown above. ⋅ For the terminal used for the Y93 signal output, assign the f unction by setti ng "93" (positive logic) or "193" (negative logic) in any of P r .
287 Useful func tions 4 P ARA METERS (3) Setting of Pr . 557 Curr ent average value mo nitor signal output r eference curr en t Set the reference (100%) for outputting the signal of the current average value. Obtain the time to output the signal from the following calculation.
288 Useful func tions 4.22.5 Free param eter (Pr . 888, Pr . 889) Parameters you can use for your own purposes. Y ou can input any number within the setting range 0 to 9999. For example, the number can be used: ⋅ As a unit number when multiple uni ts are used.
289 Useful functions 4 P ARA METERS 4.22.6 Ini tiating a fa ult (Pr .997) ......... ...... S pecifications di ffer according to the date as sembled . Refer to page 378 to che ck the SE RIAL num ber. The a bov e pa ramet ers can be set when User gro up rea d se lect ion= "0.
290 Useful functions 4.22.7 Setting multiple par ameters a s a batc h (Pr .999) * This para meter allows it s setting to be change d in any operat ion mode even if "0 (in itial value) " is set in Pr . 77 P arame ter write sele ction . (1) Automatic pa rameter setti ng (Pr .
291 Useful functions 4 P ARA METERS (2) Automatic par ameter setting using the operati on panel (p arameter sett ing mode) Operation example The communication setting p arameters for t he GOT connection with a PU connector are automatically set.
292 Useful functions (3) Parameter setting mode Flickers <Automatic parameter setting mode> Always displayed as "0" when the parameter is read. Write "1 or 2" to select the automatic setting. Pressing in the "0" setting displays the next Pr .
293 Useful functions 4 P ARA METERS (4) List of automatically -set p arameters The following tables show which parameters are changed in each of the automatic p arameter settings. ⋅ GOT initial setting (PU connector) ( Pr .999 = "10") ⋅ GOT initial setting (RS-485 terminals) ( Pr .
294 Useful functions ⋅ Rated frequency ( Pr . 999 = "20(50Hz), 21(60Hz)") * T his p arame ter can b e set when the option FR-A7NL is mounte d. ⋅ Acceleration/deceleration ti me increment ( Pr .999 ="30(0.1s) or 31(0.01s )") * T he set valu e is changed f or Pr .
295 Setting from th e pa ramete r unit, operation pa nel 4 P ARA METERS 4.23 Setting from the parameter unit, op eration panel 4.23.1 PU display language sele ction (Pr . 145) The abo ve p aram eter s can be se t when Pr . 160 User group r ead sele ction = "0" .
296 Sett ing from t he paramet er un it, oper ati on panel (1) Setting the frequen cy with the setting dial Opera tion exam ple Oper ate a t 30 Hz. Operatio n Display 1. S creen at powe r-ON The monitor display appears . 2. Operatio n mode ch ange Press to choose the PU operation mode.
297 Setting from th e pa ramete r unit, operation pa nel 4 P ARA METERS (2) Using the sett ing dial like a pot entiometer t o set the frequency Operation example Changing the frequency from 0Hz to 60Hz during operation REMARKS ⋅ If the displ ay changes from flick ering "60.
298 Sett ing from t he paramet er un it, oper ati on panel (3 ) Disable the setting dial and key operation of the operation panel (Press [MODE] long (2s)) ⋅ Operation using the setting dial and key of the operation p anel can be made invali d to prevent parameter change, and unexpected start or frequency setting.
299 Param eter clea r 4 P ARAM ETERS 4.24 P arameter c lear POIN T ·S e t " 1 " i n Pr . CL par ameter clear to initialize p arameters. (Parameters are not cleared when "1" is set in Pr . 77 Parameter write selection . In addition, cali bration parameters are not cleared.
300 All parameter cle ar 4.25 All par ameter c lear POIN T · S et "1" in ALLC all pa rameter c lear to initialize all parameters. (Parameters are not cleared when "1" is set in Pr . 77 Parameter write s election .) Setting De scription 0 Not e xecuted .
301 Parameter copy and parameter verification 4 P ARAM ETERS 4.26 P arameter copy a nd parameter v erif icati on 4.26.1 Parameter copy PCPY Setting De scription 0 Cancel 1 Copy the source parameters to the operation panel. 2 Write the parameters cop ied to the operation panel into the destination inverter .
302 Parameter copy and parameter verification 4.26.2 Parameter verification appears ...Why? Parameter re ad error . Perform op eration from s tep 3 agai n.
303 Initial value change list 4 P ARA METERS 4 P ARA METERS 4.27 Initial value c hange list Displa ys and s ets th e param eters ch anged fr om the in itial val ue. Operation D isplay 1. Sc reen at power-ON The monitor dis play appears. 2. Op erat ion mode sett ing Pres s to choose the PU operation mode.
304 Check an d clear of the fault s histo ry 4.28 Check and c lear of the f aults histor y (1) Check for the faul t s history * The cumulat ive energ ization t ime and act ual oper ation time a re accumul ated from 0 to 6 5535 hou rs, then c leared, and a ccumulate d again from 0.
305 Check a nd clear o f the faul ts history 4 P ARA METERS (2) Clearing procedure POIN T · The fault s history can be cleared by setting "1" in Er .CL F aul ts h ist ory clea r . 1. Screen at power-ON The monitor display appears. Display Operation 2.
306 MEMO.
307 3 4 5 6 7 1 2 5 PR O TE CTIVE FU NCTIONS This chapter describes t he basic "PROTECTIVE FUNCTION" for use of this product. Always read the inst ructions before using the equip ment. 5.1 Reset method of pro tective f unction ...... .......
308 Reset method of prot ective function When a fault occurs in the inverter , the inverter trips and the PU display automatically changes to one of the following fault or alarm indications. If the fault does not correspond to any of the following fault s or if you have any other problem, pleas e contact your sales representative or distrib utor .
5 PROTECTIVE FUNCTIONS 309 List of fault or al arm display 5.2 List of fault or alar m display * If an error occurs when using FR-PU04/FR-P U07, "Fau lt 14" is dis play ed o n FR- PU04 /FR -PU 07.
310 Cause s and co rrect ive ac tions 5.3 Causes and cor r ectiv e actions (1) Error Message A message regarding operational troubles i s displayed. Output is not shut of f. Operation Panel Indication HOLD Name Oper ati on pa nel l ock Descript ion Oper at ion l ock m ode i s se t.
31 1 Cause s and cor rective acti ons 5 PROTECTIVE FUNCTIONS Oper atio n Pan el Indication Er4 Name Mode de signat ion error Description · Y ou attemp ted to m ake parame ter setting in the NE T operation mode when Pr .
312 Cause s and co rrect ive ac tions (2) W arning When the protective function is activated, th e output is not shut off. Operation Pa nel Indication OL FR-PU0 4 FR-P U07 OL Name St all prevent ion (ove rcurrent ) Description During accelerat ion When t he output current of the invert er exceed s the stall preve ntion op eration l evel ( Pr .
313 Cause s and cor rective acti ons 5 PROTECTIVE FUNCTIONS (3) Alarm When an alarm occurs, the output is not shut off. Y ou can also output an alarm signal by making parameter setting. (Set "98" in any of Pr . 190 to Pr . 196 (outp ut termin al func tion s electio n) .
314 Cause s and co rrect ive ac tions (4) Fault When a fault occurs, the inverter trip s and a fault signal is output. Operation Pa nel Indication E.OC1 FR -P U04 FR-P U07 OC During Acc Name Overcurre.
315 Cause s and cor rective acti ons 5 PROTECTIVE FUNCTIONS Operation P anel Indicati on E.OC3 FR- PU0 4 FR-P U07 OC During Dec Name Overcurr ent trip during decel eration or stop Descriptio n When th.
316 Cause s and co rrect ive ac tions Operation Pa nel Indication E.THT FR-PU0 4 FR-PU07 Inv . Overloa d Name Inver ter over load tri p ( elec tron ic th ermal rel ay f unct ion ) *1 Description If a .
317 Cause s and cor rective acti ons 5 PROTECTIVE FUNCTIONS Operation P anel Indicati on E.BE FR- PU0 4 FR-P U07 Br . Cct. Fault Name Br ake tr ansi sto r al arm d etec tion /in tern al c ircui t f ault Descriptio n Thi s fu ncti on st ops the inv erte r ou tput if a faul t o ccurs in t he br ake circ uit , e.
318 Cause s and co rrect ive ac tions Operation Pa nel Indication E.GF FR-PU0 4 FR-P U07 Ground Fault Name Outpu t side ear th (ground ) fault ove rcurre nt Description This function stops the i nvert.
319 Cause s and cor rective acti ons 5 PROTECTIVE FUNCTIONS Operation P anel Indicati on E.OP1 FR- PU0 4 FR-P U07 Option 1 Fault Name Com munic atio n opti on fau lt Descriptio n S tops the inverte r output w hen a comm unica tion line fault occu rs in the com municat ion opt ion.
320 Cause s and co rrect ive ac tions Operation Pa nel Indication E. 5 FR-PU04 FR-PU07 Fault 5 E. 6 Fault 6 E. 7 Fault 7 E.CPU CPU Fault Name CPU fault Description S tops the inverter ou tput if the co mmuni cation f ault of the built-in CP U occurs. Check p oint Check for d evices producin g exce ss electri cal noises aroun d the inve rter .
321 Cause s and cor rective acti ons 5 PROTECTIVE FUNCTIONS Operation P anel Indicati on E.SER FR-PU04 Fault 14 FR-PU07 VFD Comm error Name Communicatio n fault (inverter) Descriptio n This funct ion .
322 Corres ponde nce s bet ween d igital and actual ch aracters 5.4 Cor r espondences betwe en digita l and actual c haracter s There are the following correspondences between the actual alphanumeric characters and the digital characters displayed on the operation p anel.
323 Check fi rst when you have a trouble 5 PROTECTIVE FUNCTIONS 5.5 Check first w hen y ou hav e a trouble 5.5.1 Motor does not start POIN T · If the cause of malfunction is still unknown after performing applicable checks, initializ ation of parameter settings is recommended.
324 Check first whe n you have a trouble Input Signal was p ressed. (Operation panel indication is (PS).) During the E xternal operation mode, c heck the met hod of restarting from a input stop f rom PU. 312 T wo-wire or three-wire type connection is wrong.
325 Check fi rst when you have a trouble 5 PROTECTIVE FUNCTIONS 5.5.2 Motor o r machine is making abno rmal acoustic noise When opera ting th e inverter with the ca rrier freq uency o f 3kHz (6kHz during IPM motor co ntrol) or m ore set in Pr .
326 Check first whe n you have a trouble 5.5.5 M otor ro tates in the opposite direction 5.5.6 S peed greatly differs from the setting 5.5.7 Accelera tion/deceler ation is not s mooth Check points Possible Cause Count ermeas ures Refer to pag e Main Circuit Phase sequence of output terminals U, V and W is incorrect.
327 Check fi rst when you have a trouble 5 PROTECTIVE FUNCTIONS 5.5.8 Speed varies du ring operation 5.5.9 Operation m ode i s no t chan ged properl y Check points Poss ibl e C a use Counterm easures Refer to pag e Loa d Load varies during an operation.
328 Check first whe n you have a trouble 5.5.10 O peration panel (FR-DU07) disp lay is not operating 5.5.1 1 Motor cu rrent is too large Check points Possible Cause Count ermeas ures Refer to pag e Main Circuit, Control Circuit Power is not input . Input the power .
329 Check fi rst when you have a trouble 5 PROTECTIVE FUNCTIONS 5.5.12 Speed do es not accelerate 5.5.13 Unable to w rite parameter setting 5.5.14 Power lamp is not lit Check points Poss ibl e C a use Counterm easures Refer to pag e Inp ut signal S tart command and frequency command are chattering.
330 MEMO.
331 3 4 5 6 7 1 2 6 PRECA UTIO NS F OR MAINTEN ANCE AND INSPECTION This chapter d escribes the "PRE CAUTIONS FO R MAINTENAN CE AND INSPECTION" of this product. Always read the inst ructions before using the equip ment. 6.1 Inspe ctio n item .
332 Inspect ion item The inverter is a st atic unit mainly consisting of semiconductor devices. Dail y inspection must be performed to prevent any fault from occurring due to the adverse effects of the operating environment, such as temperature, humidity , dust, dirt and vibration, changes in the part s with time, service li fe, and other factors.
333 Inspect ion item 6 PRECAUTIONS FOR MAINTENANCE AND INSPECTION 6.1.3 Daily and periodic inspection *1 I t is r ecomm ende d to i nstall a devic e to m onit or vol tage for chec king th e pow er s upply voltage to the inver ter . *2 One to t wo year s of peri odi c ins pecti on cycl e is re comme nded.
334 Inspect ion item 6.1.4 Display of the life of the invert er parts The self-diagnostic alarm is output when the l ife span of the control circuit cap acitor , cooling fan, each part s of the inrush current limit circuit is near its end. It gives an indication of replacement time .
335 Inspect ion item 6 PRECAUTIONS FOR MAINTENANCE AND INSPECTION 6.1.6 Cleani ng Always run the inverter in a clean status. When cleaning the inverter , gently wipe dirty areas with a sof t cloth immersed in neutral detergent or ethanol. 6.1.7 Replacement of part s The inverter consists of m any electronic part s such as semiconductor devices.
336 Inspect ion item (1) Cooling fan The replacement interval of the cooling fan used for cooling the part s generating heat such as the main circuit semiconductor is greatly af fected by the surrounding ai r temperature. When unusual noise and/or vibration is noticed during inspection, the coo ling fan must be replaced immediatel y .
337 Inspect ion item 6 PRECAUTIONS FOR MAINTENANCE AND INSPECTION • Reinstallation (FR-F720P-2.2K to 1 10K, FR-F740P-3.7K to 160K) 1)After c onfirming the orien tation of th e fan , re install the fan so that the arrow on t he left of " AIR F LOW" face s up.
338 Inspect ion item • Removal (FR-F740P-185K or higher) 1) Remove a fan cover . 2) After removing a fan connector , remove a fan block. 3) Remove a fan. (Make sure to remove the fan cable from the clamp of the fan block beforehand.) * The number of cooling fans dif fers according to the inverter capacity .
339 Inspect ion item 6 PRECAUTIONS FOR MAINTENANCE AND INSPECTION (2) Replacement procedure of the cooling f an when using a h eat sink pro trusion att ac hment (FR-A7CN) (3) Sm oothing cap acitors A .
340 Measur ement o f main cir cuit volt ages, currents and powe rs 6.2 Measur e ment of main cir cuit v olta ges, cur r ents and power s Since the voltages and currents on the inverter power supply and output sides include harmonics, measurement data depends on the ins truments used and circuit s measured.
341 Measur ement of main circuit volt ages, currents an d powers 6 PRECAUTIONS FOR MAINTENANCE AND INSPECTION Measuring Point s and Instrument s *1 Use an FFT to measur e the output vol tage accu rately . A tester or gene ral measuring instrument can not measure accur ately .
342 Measur ement of main circ uit volt ages, curren ts an d powers 6.2.1 Measur ement of powers Use digital power meters (for inverter) for the both of inverter input and output side.
343 6 PRECAUTIONS FOR MAINTENANCE AND INSPECTION Measur ement of ma in circui t volt ages, currents and powe rs 6.2.3 Measurement of currents Use moving-iron type meters on both the input and output sides of the inverter .
344 Measur ement of main circ uit volt ages, curren ts an d powers 6.2.6 Measur ement of conver ter output volt age (acros s terminals P /+ and N/-) The output voltage of the converter is developed across terminals P/+ and N/- and can be measured with a moving-coil type meter (tester).
345 3 4 5 6 7 1 2 7 SPECIFICA TIONS This chapter provides the "S PECIFICA TIONS" of thi s product. Always read the inst ructions before using the equip ment. 7.1 R ating ..... .... ..... ..... ....... ..... ..... ..... .... ..... ..... .....
346 Rating 7.1 Rati ng • 200V class T ype FR- F720P - K 0.75 1.5 2.2 3.7 5.5 7.5 11 15 18.5 22 30 37 45 55 75 90 11 0 Applicable motor capacity (kW) *1 0.75 1.5 2. 2 3.7 5.5 7. 5 11 15 18.5 22 30 37 45 55 75 90 11 0 Output Ra ted ca paci ty (kV A) *2 1.
347 Rati ng 7 SPECIFICA TIONS • 400V class T ype F R-F740 P- K 0.75 1.5 2.2 3.7 5. 5 7.5 11 15 18.5 22 30 37 45 55 Applicable motor capacity (kW) *1 0.75 1.5 2.2 3.7 5.5 7.5 11 15 18.5 22 30 37 45 55 Output Rated capacity (kV A) *2 1.6 2.7 3.
348 Common speci fic ations 7.2 Common specif ica tions Control specifications Control method High carrier frequenc y PWM control (V/F contr ol)/Optimum excitati on control/S imple magnetic flux vector control/I PM motor control Output frequency range 0.
349 Com mon spe cif icat ions 7 SPECIFICA TIONS *1 This function is only available fo r 75K or higher . *2 This function is only av ailable under gen eral-pur pose motor control . *3 This can be displayed on ly on the operation p anel (FR-DU07). *4 This can be displayed on ly on the option p arameter unit (FR-PU07).
350 Outlin e dime nsio n draw ings 7.3 Outline dimension dr awings 7.3.1 Inverter outline dimension drawings • FR-F720P-0.75K, 1. 5K • FR-F720P-2.2K, 3.7K, 5. 5K • FR-F740P-0.75K, 1.5K, 2. 2K, 3.7K, 5 .5K (Unit: mm) (Unit: mm) 2- φ 6 hole D 260 245 7.
351 Outline dime nsion dra wings 7 SPECIFICA TIONS • FR-F720P-7.5K, 1 1K, 15K • FR-F740P-7.5K, 1 1K, 15K, 18.5K • FR-F720P-18.5K, 22K, 30K • FR-F740P-22K, 30K (Unit: mm) (Unit: mm) H1 H D 2- φ 6 hole 7.5 220 195 21 1 10 6 7.5 D1 Inverte r Model H H1 D D1 FR-F720P -7.
352 Outlin e dime nsio n draw ings • FR-F720P-37K, 45K, 55K • FR-F740P-37K, 45K, 55K • FR-F740P-75K, 90K (Unit: mm) (Unit: mm) W2 W W1 H1 D 2- φ d hole H2 550 10 3.
353 Outline dime nsion dra wings 7 SPECIFICA TIONS • FR-F720P-75K, 90K, 1 10K • FR-F740P-132K, 160K • FR-F740P-1 10K (Unit: mm) (Unit: mm) E P1 P P1 P 130 150 Rating plate (for M6 screw) 4-installation hole (for M6 screw) Earth (ground) terminal Within 195 (for M12 bolt) 2-terminal 340 10 310 10 300 3.
354 Outlin e dime nsio n draw ings • FR-F740P-185K, 220K • DC reactor supplied (Unit: mm) 15 985 10 1010 49 200 200 49 498 12 380 3.2 450 148.5 214.
355 Outline dime nsion dra wings 7 SPECIFICA TIONS • FR-F740P-250K, 280K, 315K • DC reactor supplied (Unit: mm) R/L1 S/L2 T/L3 N/- P1 P/+ U V W 984 1010 12 300 300 680 3.
356 Outlin e dime nsio n draw ings • FR-F740P-355K, 400K (Unit: mm) 3- φ 12 hole R/L1 S/L2 T/L3 N/- P1 P/+ UW V 790 440 4.5 4.5 185 222 194 1300 1330 315 12 315 E P P1 P1 P 75 40 40 500 10 455 10 220 195 Rating plate 2-M8 eye nut 2-terminal 4- 15 hole * Remove the eye nut after installation of the product.
357 Outline dime nsion dra wings 7 SPECIFICA TIONS • FR-F740P-450K, 500K, 560K (Unit: mm) R/L1 S/L2 T/L3 N/- V UW 300 12 995 1580 440 1550 P1 P/+ 185 4- φ 12 hole 4.5 300 300 950 189 227 4.5 E P P1 P1 P 75 40 40 500 10 455 10 220 195 Rating plate 2-M8 eye nut 2-terminal 4- 15 hole * Remove the eye nut after installation of the product.
358 Outlin e dime nsio n draw ings • Operation p anel (FR-DU07) • Parameter unit (opt ion) (FR-PU07(- L) 2-M3 screw Panel Cable Air- bleeding hole FR-DU07 Operation panel connection connecto r (FR-ADP option) <Outline drawing> <Panel cutting dimension drawing> 78 50 44 72 3 3 81 3 3 16 25 3.
359 Specifi cation o f premiu m high -effici ency IPM mot or [MM-E FS (1500 r/min) ser ies] 7 SPECIFICA TIONS 7.4 Specifica tion of pr emium high-ef ficienc y IPM motor [MM-EFS (1500r/ min) series] Moto r spe cif icat ion *1 The above characte ristics apply when the r ated AC volt age is input f rom the i nverter .
360 Specific ation o f high-e fficiency IPM motor [ MM-EF (180 0r/min) series] 7.5 Specifica tion of high-ef ficienc y IPM motor [MM-EF (1800r/ min) series] Moto r spe cif icat ion *1 The above c haracteris tics apply when the ra ted AC voltage is input from the inverter .
361 Heat sink p rotrusion att achment procedur e 7 SPECIFICA TIONS 7.6 Heatsink protr usion a ttac hment procedure When encasing t he inverter in an enclosure, the generated heat amount in an enclosure can be greatly reduced by install ing the heatsink portion of the inv erter outside the enclosure.
362 Heat sink protr usion att achment procedure (2) Shift and removal of a rear side inst allation frame (3) Installation of the inv erter Push the inverter heatsink portion outsi de the enclosure and fix the enclosure and inverter with upper and lower install ation frame.
363 APPENDICES This chapter provides the "APPENDICES" of this p roduct. Always read the inst ructions before using the equip ment..
364 For cu stome rs who a re re placing the co nventi onal m odel with this inve rter Appendix 1- 1 Replace ment of the FR- F500 serie s (1) Instructions f or inst allation 1)Removal procedure of the front cover was changed. (with screws) Please note.
365 For c ustomers who are replac ing the conv ention al mo del with this i nverter (4) Main differences and compat ibilities wit h the FR-F500(L) series Appendix 1-2 Repl acement of t he FR-A100 <.
366 Opti ons and p rodu cts availa ble on the ma rket By fitting the following options to the inverter , the inverter is provided with more functions. Appendix 2 Optio ns and pr oduct s available on the m arket Name Model Appli cations, S pecificatio ns, etc.
367 Options and pro duct s av ailab le on the ma rket * Rated power c onsumption. The power supply specific ations of th e FR series manual contro llers and speed c ontrollers are 20 0V AC 50Hz, 220/ 220V AC 60Hz, and 1 15V AC 60Hz. Commercially availab le product s (as of Jan.
368 *1 These instruct ion codes are used f or parameter rea d and write by using Mit subishi inver ter protocol wit h the RS-485 communic a tion. (Refer t o page 22 9 for RS-48 5 communication) *2 V a.
369 28 Multi-s peed inpu t compe nsatio n sele ction 1C 9C 0 29 Accele ration/dec eleratio n pat ter n sele ctio n 1D 9D 0 30 Regen erative f unction sele.
370 75 Reset selection/disconnected PU detection/PU stop selecti on 4B CB 0 × × 76 Fault code outpu t selec tion 4C CC 0 77 * Parameter write selection 4D CD 0 .
371 135 Electron ic bypass se quence select ion 23 A3 1 × 136 MC switchover in terlock time 24 A4 1 × 137 S tart waiting ti me 25 A5 1 × 138.
372 168 Parameter for manufacturer s etting. Do not set. 169 170 W att- hour me ter clea r 0A 8A 2 × 171 Oper ation hour meter cle ar 0B 8B 2 ××× 172 User grou p re g.
373 244 Cooling f an operat ion select ion 34 B4 2 245 Rated slip 35 B5 2 × 246 Slip com pensa tion time constant 36 B6 2 × 247 Constant-.
374 308 Setting for maxi mum analog output 08 88 3 309 Analog output sign al voltage/ curren t swi tchover 09 89 3 310 Analog meter vol tage output select.
375 387 Ini tia l co m mu nic at io n de la y time 57 D7 3 388 Send tim e interval at heart beat 58 D8 3 389 Minimum sen ding time at heart b eat 59 D9 3 .
376 576 Ou tpu t in te rru pti on de tec tio n level 4C CC 5 577 Ou tpu t in te rru pti on ca nce l level 4D CD 5 61 1 Accele ration time at a restart 0B .
377 C0 (900) FM termi nal calibratio n 5C DC 1 × C1 (901) AM termi nal calibratio n 5D DD 1 × C2 (902) T erm inal 2 frequ ency set ting bias freq uency 5E DE 1 .
378 Appendix 4-1 SERIAL number check Refer to page 2 for the location of the rating plate. Appendix 4-2 Changed functions (1) The following functions are available for the 400V class inverters, and the 200V class inverters manufactured in May 2010 or later .
379 (3) The following functions are available with the products bearing the SERIAL shown below or later . Check the SERIAL on the rating plate of the inverter or on the pac kage. Model SERIAL (Serial No.) FR-F740 P-1.5K to 45K 11 (January 201 1 or later) FR-F740 P-0.
380 n Numerics 15-spe ed s election (com binatio n with three spe eds R L, RM, RH, REX) ..... .......... .......... ....... .......... ........... .......... ....... .......... ...133 A Acce leration/ deceler ation pattern (Pr.29, Pr.1 40 to Pr.143) .
381 Initiati ng a fault (P r.997) ........ .......... .......... ....... ........... .......... .. 289 Input com pen sation of multi-s peed and re mote se tting (Pr. 28) ...... ....... .......... ........... .......... ....... .......... .......... ..
382 Pr.20, Pr.21, Pr.44, Pr.45 , Pr. 147, Pr.791 , Pr.792) ......... .. 109 Settin g procedu re of IPM m otor control (IPM) ............ .......... . 77 Settin g the freq uency by an alog inp ut (volta ge input ) ........... ....... .......... .......
383 MEMO.
384 REVISIONS *The m anual nu mber is g iven on t he bottom lef t of the bac k cove r . Print Date *Manual Number Revision Oct. 2 010 IB(NA)-0 600412EN G-A First e dition Apr 201 1 IB(NA)-0600412ENG -B ⋅ MM-EFS71M 4 to 55K1M4 ⋅ Setting value "210 " for Pr .
1/2 BCN-C22005- 620 FR-F 700P Series Instructi on Manual Supp lement For the FR-F700P series manufactured in December 201 1 or later , the following specifications are added. Check the serial number printed on the rating plate o r on package of the inverter .
2/2 BCN-C22005- 620 2 Overspeed det ection funct ion (Pr . 374) Inverter outputs are stopped when the motor speed exceeds the Pr . 374 Overspeed detection level under IPM motor control. Selecting the IPM motor control by the para meter setting mode or Pr .
1/2 BCN-C22005-632 FR-F 700P Series Instruction Manual Supplement For the FR -F700P series manu factured in July 2012 o r later , the following s pecificat ions are ad ded or modified. Check the se rial number printed on the rating plate or on package of the inve rter .
2/2 BCN-C22005-632 2 MM-EFS rated cur ren t change The rated motor current has been changed for the MM-EFS 1.5kW to 3.7kW (200V/400V) premium high-efficiency IPM motors. As a result, the rated motor current auto matically set in Pr .998 IPM parameter initialization is changed as shown below .
1/8 BCN-C22005-639 FR-F 700P Series Instruction Manual Supplement For the FR-F700P series manufactured in December 2012 or later , the following specifications are added. Check the serial number printed on the rating plate or on p ackage of the inverter .
2/8 BCN-C22005-639 1.2 IPM motor control setting by selecting the parame ter setting mode on the operation panel ( ) POINT · The parameters required to drive an IPM motor are automatically changed as a batch.
3/8 BCN-C22005-639 1.3 Initializing the parameters required to drive an IPM motor (Pr .998) (1) IPM parameter initialization (Pr . 998) · When Pr . 998 = "1 or 12," the monitor is displayed and the frequency is set using the motor rotations per minute.
4/8 BCN-C22005-639 (2) IPM p arameter initialization list By selecting IPM motor control from the parameter setting mode or with Pr . 998 IPM parameter initialization , the parameter settings in the following t able change to t he settings required to drive an IPM motor .
5/8 BCN-C22005-639 [IPM motor specification list] 1.4 Applied motor (Pr . 71) The above paramete rs can be set when Pr . 160 User g roup r ead selection = "0". (Refer to the In structio n Manual ) * Perform ing IPM parameter i nitializ ation change s the settin gs.
6/8 BCN-C22005-639 1.5 Specification of the premium high-ef ficiency IPM motor [ MM-THE4 (1500r/min) series] Motor specification *1 Output and r ated motor speed a re not gu aranteed when th e power sup ply voltage drops.
7/8 BCN-C22005-639 2 Frequenc y jump (6-point jump) (Pr .552) When it is desired to avoid resonance attribut able to the natural frequency of a mechanical system, these parameters allow resonant frequencies to be jumped. The above parameters can be set when Pr .
8/8 BCN-C22005-639 3 SERIAL number Check the SERIAL number indicated on the inverter rating plate or package. • SERIAL number check Refer to the inverter manual for the location of the rating plate.
1/2 BCN-C22005-644 FR-F 700P Series Instruction Manual Supplement The FR-F740P-1 10K to 160K manufactured in April 2013 or later are compatible with the premium high- efficiency IPM motor (MM -THE4 series). Check the serial number printed on the rating plate or on p ackage of the inverter .
2/2 BCN-C22005-644 • SERIAL number check Check the SERIAL number indicated on the inverter rating plate or package. Refer to the inverter manual for the location of the rating plate.
FR-F700P INSTRUCTION MANUAL (Applied) INVERTER FR-F700P INVERTER INSTR UCTION MANUAL (Applied) B HEAD OFFICE: TOKYO BUILDING 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAP AN IB(NA)-0600412ENG-B (1 105)MEE Printed in Japan S pec ifications subject to change with out notice.
Een belangrijk punt na aankoop van elk apparaat Mitsubishi Electronics FR-F740P (of zelfs voordat je het koopt) is om de handleiding te lezen. Dit moeten wij doen vanwege een paar simpele redenen:
Als u nog geen Mitsubishi Electronics FR-F740P heb gekocht dan nu is een goed moment om kennis te maken met de basisgegevens van het product. Eerst kijk dan naar de eerste pagina\'s van de handleiding, die je hierboven vindt. Je moet daar de belangrijkste technische gegevens Mitsubishi Electronics FR-F740P vinden. Op dit manier kan je controleren of het apparaat aan jouw behoeften voldoet. Op de volgende pagina's van de handleiding Mitsubishi Electronics FR-F740P leer je over alle kenmerken van het product en krijg je informatie over de werking. De informatie die je over Mitsubishi Electronics FR-F740P krijgt, zal je zeker helpen om een besluit over de aankoop te nemen.
In een situatie waarin je al een beziter van Mitsubishi Electronics FR-F740P bent, maar toch heb je de instructies niet gelezen, moet je het doen voor de hierboven beschreven redenen. Je zult dan weten of je goed de alle beschikbare functies heb gebruikt, en of je fouten heb gemaakt die het leven van de Mitsubishi Electronics FR-F740P kunnen verkorten.
Maar de belangrijkste taak van de handleiding is om de gebruiker bij het oplossen van problemen te helpen met Mitsubishi Electronics FR-F740P . Bijna altijd, zal je daar het vinden Troubleshooting met de meest voorkomende storingen en defecten #MANUAl# samen met de instructies over hun opplosinge. Zelfs als je zelf niet kan om het probleem op te lossen, zal de instructie je de weg wijzen naar verdere andere procedure, bijv. door contact met de klantenservice of het dichtstbijzijnde servicecentrum.