Gebruiksaanwijzing /service van het product AA-RHGWB-TE van de fabrikant Compaq
Ga naar pagina of 320
T ruCluster Ser v er Hardware Configur ation Part Number: AA-RHGWB-TE April 2000 Product V er sion: T ruCluster Ser v er V ersion 5.0A Operating System and V ersion: T ru64 UNIX V ersion 5.0A This manual describes how to configure the hardware for a T ruCluster Server environment.
© 2000 Compaq Computer Corporation COMP AQ and the Compaq logo Registered in U.S. Patent and T rademark Office. T ruCluster and T ru64 are trademarks of Compaq Information T echnologies Group, L.P . Microsoft and Windows are trademarks of Microsoft Corporation.
Contents About This Manual 1 Introduction 1.1 The T ruCluster Server Product . . . . . . . . . .... ...... ....... ...... ..... 1–1 1.2 Overview of the T ruCluster Server Hardware Configuration . . 1–2 1.3 Memory Requirements . . . ....... ...... .
2.6 RAID Array Controller Restrictions . . . .... ...... ....... ...... ..... 2 – 7 2.7 SCSI Signal Converters . . ....... ...... ....... ...... ....... ...... ..... 2 – 8 2.8 DS-DWZZH-03 and DS-DWZZH-05 UltraSCSI Hubs . . . . . . . . . . . 2 – 9 2.
4.3 T ruCluster Server Hardware Installation . . . . . . . . . ....... ...... .. 4 – 5 4.3.1 Installation of a KZPBA-CB Using Internal T ermination for a Radial Configuration . . . . . . . . . . ....... ...... ....... ...... .. 4 – 7 4.3.2 Displaying KZPBA-CB Adapters with the show Console Commands .
6.2.2.2 Fabric ....... ...... ....... ...... ....... ...... ....... ...... ..... 6 – 6 6.2.2.3 Arbitrated Loop T opology . . . . . . .... ...... ....... ...... ..... 6 – 7 6.3 Example Fibre Channel Configurations Supported by T ruCluster Server . .
6.12 Using the emx Manager to Display Fibre Channel Adapter Information . . . .... ...... ....... ...... ...... ....... ...... ....... ...... .. 6 – 59 6.12.1 Using the emxmgr Utility to Display Fibre Channel Adapter Information . .... ...... ......
8.7.2.1 Cabling the DL T MiniLibraries . . . . . . . . . . . . ....... ...... .. 8 – 24 8.7.2.2 Configuring a Base Module as a Slave . . . . ....... ...... .. 8 – 26 8.7.2.3 Powering Up the DL T MiniLibrary . . . . . . . . ....... ...... .. 8 – 28 8.
8.11.2.1.1 Setting the Standalone MiniLibrary T ape Drive SCSI ID . . . . . . .... ...... ...... ....... ...... ....... ...... .. 8 – 53 8.11.2.1.2 Cabling the TL881 or TL891 DL T MiniLibrary . . . . 8 – 54 8.11.2.2 Preparing a TL881 or TL891 Rackmount MiniLibrary for Shared SCSI Bus Usage .
9.4.1 Preparing BA350, BA356, and UltraSCSI BA356 Storage Shelves for an Externally T erminated T ruCluster Server Configuration . . . . . . . . . ....... ...... ....... ...... ....... ...... ..... 9 – 15 9.4.1.1 Preparing a BA350 Storage Shelf for Shared SCSI Usage .
10.1.4.5 Updating the KZPSA-BB Adapter Firmware . . . . . . . . . . . 10 – 18 A W orldwide ID to Disk Name Con version T able Index Examples 4 – 1 Displaying Configuration on an AlphaServer DS20 . . . . . . . . . . . . . 4 – 10 4 – 2 Displaying Devices on an AlphaServer DS20 .
1 – 2 Generic T wo-Node Cluster with Minimum Disk Configuration and Quorum Disk . . . . . . . . . ....... ...... ....... ...... ....... ...... ..... 1 – 7 1 – 3 Minimum T wo-Node Cluster with UltraSCSI BA356 Storage Unit . . . . . . . . . . . . .
8 – 6 Cabling a Shared SCSI Bus with a TZ885 . . . . . . . . . .......... ..... 8 – 15 8 – 7 TZ887 DL T MiniLibrary Rear Panel . . . ....... ...... ....... ...... .. 8 – 16 8 – 8 Cabling a Shared SCSI Bus with a TZ887 . . . . . . . . . .....
2 – 4 Supported SCSI T erminators and T rilink Connectors . . . . . . . . . . 2 – 11 3 – 1 SCSI Bus Speeds . . . . . . . . . . ....... ...... ....... ...... ....... ...... ..... 3 – 5 3 – 2 SCSI Bus Segment Length . . . . . . . . . . . . . .
9 – 4 Hardware Components Used in Configuration Shown in Figure 9 – 1 4 ....... ...... ....... ...... ...... ....... ...... ....... ...... .. 9 – 30 10 – 1 Configuring T ruCluster Server Hardware for Use with a PCI SCSI Adapter . ....... .....
.
About This Manual This manual describes how to set up and maintain the hardware configuration for a T ruCluster Server cluster . A udience This manual is for system administrators who will set up and configure the hardware before installing the T ruCluster Server software.
Chapter 8 Describes how to configure a shared SCSI bus for tape drive, tape loader , or tape library usage. Chapter 9 Contains information about setting up a shared SCSI bus, SCSI bus requirements, and how to connect storage to a shared SCSI bus using external termination or radial connections to non-UltraSCSI devices.
• HSZ70 Array Controller HSOF V ersion 7.0 Configuration Manual • HSZ80 Array Controller ACS V ersion 8.2 • Compaq StorageW orks HSG80 Array Controller ACS V ersion 8.5 Configuration Guide • Compaq StorageW orks HSG80 Array Controller ACS V ersion 8.
systems. It is available on line in PostScript and Portable Document Format (PDF) formats at: http://www.compaq.com/info/golden-eggs At this URL you will find links to individual system, storage, or cluster configurations. Y ou can order the document through the Compaq Literature Order System (LOS) as order number EC-R026B-36.
UBPG Publications Manager ZKO3-3/Y32 110 Spit Brook Road Nashua, NH 03062-2698 A Reader ’ s Comment form is located in the back of each printed manual. The form is postage paid if you mail it in the United States. Please include the following information along with your comments: • The full title of the book and the order number .
cluster Bold text indicates a term that is defined in the glossary . xxii About This Manual.
1 Introduction This chapter introduces the T ruCluster Server product and some basic cluster hardware configuration concepts. Subsequent chapters describe how to set up and maintain T ruCluster Server hardware configurations.
interconnect, you can more easily alter or expand your cluster ’ s hardware configuration as newer and faster technologies become available. 1.2 Over vie w of the T ruCluster Ser ver Hard ware Confi.
contains up to eight linecards. The Memory Channel adapter in each system in the cluster is connected to the Memory Channel hub. One or two Memory Channel adapters can be used with T ruCluster Server .
The operating system disk (T ru64 UNIX disk) cannot be used as a clusterwide disk, a member boot disk, or as the quorum disk. Because the T ru64 UNIX operating system will be available on the first cl.
A member boot disk cannot contain one of the clusterwide root ( / ), /usr , and /var file systems. Also, a member boot disk cannot be used as the quorum disk. A member disk can contain more than the three required partitions. Y ou can move the swap partition off the member boot disk.
Figure 1 – 1 shows a generic two-node cluster with the minimum number of disks. • T ru64 UNIX disk • Clusterwide root ( / ), /usr , and /var • Member 1 boot disk • Member 2 boot disk A minimum configuration cluster may have reduced availability due to the lack of a quorum disk.
Administration manual for a discussion of how and when to use a quorum disk. Figure 1 – 2: Generic T wo-Node Cluster with Minimum Disk Configuration and Quorum Disk Member System 1 Network Memory Ch.
• Using a RAID array controller in transparent failover mode allows the use of hardware RAID to mirror the disks. However , without a second SCSI bus, second Memory Channel, and redundant networks, this configuration is still not a NSPOF cluster (Section 1.
Figure 1 – 3: Minimum T wo-Node Cluster with UltraSCSI BA356 Storage Unit ID 5 PWR Shared SCSI Bus Clusterwide /, /usr , /var Member 1 Boot Disk Member 2 Boot Disk Quorum Disk UltraSCSI BA356 ID 4 H.
this slot can be used for a second power supply to provide fully redundant power to the storage shelf. Note that with the use of the cluster file system (See the T ruCluster Server Cluster Administrat.
multiple BA356 storage units can be used on the same SCSI bus to allow more devices on the same bus. Figure 1 – 4 shows the configuration in Figure 1 – 3 with a second UltraSCSI BA356 storage unit that provides an additional seven disks for highly available applications.
1.6.3 T w o-Node Configurations with UltraSCSI BA356 Storage Units and Dual SCSI Buses By adding a second shared SCSI bus, you now have the capability to use the Logical Storage Manager (LSM) to mirror data disks, and the clusterwide /usr and /var file systems across SCSI buses.
Figure 1 – 5: T w o-Node Configurations with UltraSCSI B A356 Storage Units and Dual SCSI Buses Host Bus Adapter (ID 7) Network Memory Channel Interface Memory Channel Memory Channel Member System 2.
HSZ70. The array controllers can be configured as a dual redundant pair . If you want the capability to fail over from one controller to another controller , you must install the second controller .
Note that in the configuration shown in Figure 1 – 6, there is only one shared SCSI bus. Even by mirroring the clusterwide root and member boot disks, the single shared SCSI bus is a single point of failure.
Figure 1 – 7: NSPOF Cluster using HSZ70s in Multiple-Bus Failo ver Mode Networks Host Bus Adapter (ID 7) Member System 1 Member System 2 T ru64 UNIX Disk Host Bus Adapter (ID 6) Host Bus Adapter (ID.
Figure 1 – 8: NSPOF Fibre Channel Cluster using HSG80s in Multiple-Bus Failo ver Mode KGPSA RA8000/ ESA12000 Member System 2 KGPSA KGPSA DSGGA DSGGA RA8000/ ESA12000 Member System 1 KGPSA HSG80 HSG80 HSG80 HSG80 ZK-1533U-AI 1.
6. Install signal converters in the StorageW orks enclosures, if applicable (see Chapter 3 and Chapter 9). 7. Connect storage to the shared SCSI buses. T erminate each bus. Use Y cables or trilink connectors where necessary (see Chapter 3 and Chapter 9).
2 Hard ware Requirements and Restrictions This chapter describes the hardware requirements and restrictions for a T ruCluster Server cluster . It includes lists of supported cables, trilink connectors, Y cables, and terminators. See the T ruCluster Server Software Product Description (SPD) for the latest information about supported hardware.
There are currently three versions of the Memory Channel product; Memory Channel 1, Memory Channel 1.5, and Memory Channel 2. The Memory Channel 1 and Memory Channel 1.5 products are very similar (the PCI adapter for both versions is the CCMAA module) and are generally referred to as MC1 throughout this manual.
• For AlphaServer 2000 systems, the B2111-AA module must be at Revision H or higher . For AlphaServer 2100 systems, the B2110-AA module must be at Revision L or higher .
T able 2 – 1: AlphaServer Systems Suppor ted for Fibre Channel AlphaServer Number of KGPSA-BC Adapters Supported AlphaServer 800 2 AlphaServer 1200 4 AlphaServer 4000, 4000A, or 4100 4 Compaq AlphaS.
• The Fibre Channel RAID Array 8000 (RA8000) midrange departmental storage subsystem and Fibre Channel Enterprise Storage Array 12000 (ESA12000) house two HSG80 dual-channel controllers.
2.4 SCSI Bus Adapter Restrictions T o connect a member system to a shared SCSI bus, you must install a SCSI bus adapter in an I/O bus slot. The T ru64 UNIX operating system supports a maximum of 64 I/O buses.
– AlphaServer 8200, 8400, GS60, GS60E, GS140: 32 The KZPBA-CB is supported on the DWLPB only; it is not supported on the DWLP A module. – AlphaServer DS10: 2 – AlphaServer DS20/DS20E: 4 – AlphaServer ES40: 5 • A maximum of four HSZ50, HSZ70, or HSZ80 RAID array controllers can be placed on a single KZPBA-CB UltraSCSI bus.
T able 2 – 2: RAID Contr oller SCSI IDs (cont.) RAID Contr oller Number of SCSI IDs Suppor ted HSZ80 15 HSG80 N/A 2.7 SCSI Signal Con ver ter s If you are using a standalone storage shelf with a single-ended SCSI interface in your cluster configuration, you must connect it to a SCSI signal converter .
2.8 DS-D WZZH-03 and DS-D WZZH-05 UltraSCSI Hubs The DS-DWZZH-03 and DS-DWZZH-05 series UltraSCSI hubs are the only hubs supported in a T ruCluster Server configuration. They are SCSI-2- and draft SCSI-3-compliant SCSI 16-bit signal converters capable of data transfer rates of up to 40 MB/sec.
In addition, each supported cable comes in various lengths. Use the shortest possible cables to adhere to the limits on SCSI bus length. T able 2 – 3 describes each supported cable and the context in which you would use the cable.
2.10 SCSI T erminators and T rilink Connectors T able 2 – 4 describes the supported trilink connectors and SCSI terminators and the context in which you would use them.
.
3 Shared SCSI Bus Requirements and Configurations Using UltraSCSI Hard ware A T ruCluster Server cluster uses shared SCSI buses, external storage shelves or RAID controllers, and supports disk mirroring and fast file system recovery to provide high data availability and reliability .
termination and covers radial configurations with the DWZZH UltraSCSI hubs and non-UltraSCSI RAID array controllers. This chapter discusses the following topics: • Shared SCSI bus configuration requirements (Section 3.1) • SCSI bus performance (Section 3.
• All supported UltraSCSI host adapters support UltraSCSI disks at UltraSCSI speeds in UltraSCSI BA356 shelves, RA7000 or ESA10000 storage arrays (HSZ70 and HSZ80), or RA8000 or ESA12000 storage arrays (HSZ80 and HSG80).
3.2.1 SCSI Bus V er sus SCSI Bus Segments An UltraSCSI bus may be comprised of multiple UltraSCSI bus segments. Each UltraSCSI bus segment is comprised of electrical conductors that may be in a cable or a backplane, and cable or backplane connectors. Each UltraSCSI bus segment must have a terminator at each end of the bus segment.
connect devices that use different transmission methods, use a SCSI signal converter between the devices. The DS-BA35X-DA personality module is discussed in Section 9.1.2.2. See Section 9.1 for information about using the DWZZ* series of SCSI signal converters.
SCSI bus adapters have a default SCSI ID that you can change by using console commands or utilities. For example, a KZPSA adapter has an initial SCSI ID of 7. ______________________ Note _______________________ If you are using a DS-DWZZH-05 UltraSCSI hub with fair arbitration enabled, SCSI ID numbering will change (see Section 3.
T able 3 – 2: SCSI Bus Segment Length SCSI Bus Bus Speed Maxim um Cable Length Narrow , single-ended 5 MB/sec 6 meters Narrow , single-ended fast 10 MB/sec 3 meters Wide differential, fast 20 MB/sec.
Most devices have internal termination. For example, the UltraSCSI KZPBA-CB and the fast and wide KZPSA-BB host bus adapters have internal termination. When using a KZPBA-CB or KZPSA-BB with an UltraSCSI hub, ensure that the onboard termination resistor SIPs have not been removed.
3.6.1 Using a D WZZH UltraSCSI Hub in a Cluster Configuration The DS-DWZZH-03 and DS-DWZZH-05 UltraSCSI hubs are supported in a T ruCluster Server cluster .
• DS-DWZZH-03 and DS-DWZZH-05 UltraSCSI hubs may be housed in the same storage shelf with disk drives. T able 3 – 3 provides the supported configurations.
_____________________ Note _____________________ Dual power supplies are recommended for any BA356 shelf containing a DS-DWZZH-05 UltraSCSI hub in order to provide a higher level of availability between cluster member systems and storage. • The lower righthand device slot of the BA370 shelf within the RA7000 or ESA 10000 RAID array subsystems.
T able 3 – 3: DS-D WZZH UltraSCSI Hub Maximum Configurations (cont.) DS-DWZZH-03 DS-D WZZH-05 Disk Drives a P ersonality Module bc 112 Installed 013 Installed a DS-DWZZH UltraSCSI hubs and disk drives may coexist in a storage shelf.
______________________ Note _______________________ Host port SCSI ID assignments are not linked to the physical port when fair arbitration is disabled. The DS-DWZZH-05 reserves SCSI ID 7 regardless of whether fair arbitration is enabled or not. 3.6.1.
Figure 3 – 3: DS-D WZZH-05 Rear View W1 ZK-1448U-AI 3 – 14 Shared SCSI Bus Requirements and Configurations Using UltraSCSI Hardware.
Figure 3 – 4: DS-D WZZH-05 Front Vie w Fair Disable Host Port SCSI ID 1 (13) Host Port SCSI ID 3 (15) Controller Port SCSI ID 6 - 4 (6 - 0) Busy 0 2 ZK-1447U-AI Host Port Host Port SCSI ID SCSI ID (14) Power (12) 3.
2. If fair arbitration is to be used, ensure that the switch on the front of the DS-DWZZH-05 UltraSCSI hub is in the Fair position. 3. Install the DS-DWZZH-05 UltraSCSI hub in a UltraSCSI BA356, non-UltraSCSI BA356 (if it has the required 180-watt power supply), or BA370 storage shelf.
3.7.1 Configuring Radially Connected T ruCluster Server Clusters with UltraSCSI Hard ware Radial configurations with RAID array controllers allow you to take advantage of the benefits of hardware mirroring, and to achieve a no-single-point-of-failure (NSPOF) cluster .
or SCSI bus failure, the host can redistribute the load to the surviving controller . In case of a controller failure, the surviving controller will handle all units. ______________________ Notes ______________________ Multiple-bus failover does not support device partitioning with the HSZ70 or HSZ80.
2. Attach the trilink with the terminator to the controller that you want to be on the end of the shared SCSI bus. Attach an H8861-AA VHDCI trilink connector to: • HSZ70 controller A and controller .
Figure 3 – 5: Shared SCSI Bus with HSZ70 Configured for T ransparent Failo ver KZPBA-CB (ID 7) Network Memory Channel Interface Memory Channel KZPBA-CB (ID 6) Memory Channel Member System 2 Member S.
T able 3 – 4: Hard ware Components Used in Configuration Shown in Figure 3 – 5 Through Figure 3 – 8 Callout Number Description 1 BN38C cable a 2 BN37A cable b 3 H8861-AA VHDCI trilink connector 4 H8863-AA VHDCI terminator b a The maximum length of the BN38C (or BN38D) cable on one SCSI bus segment must not exceed 25 meters.
3.7.1.2 Preparing a Dual-Redundant HSZ70 or HSZ80 for a Shared SCSI Bus Using Multiple-Bus Failo ver Multiple-bus failover is a dual-redundant controller configuration in which each host has two paths (two shared SCSI buses) to the array controller subsystem.
• HSZ70 controller A and controller B • HSZ80 controller A Port 1 (2) and controller B Port 1 (2) ___________________ Note ___________________ Y ou must use the same port on each HSZ80 controller .
Figure 3 – 7: T ruCluster Server Configuration with HSZ70 in Multiple-Bus Failo ver Mode KZPBA-CB (ID 7) Memory Channel Interface Memory Channel KZPBA-CB (ID 6) Memory Channel Member System 2 Member.
Figure 3 – 8: T ruCluster Server Configuration with HSZ80 in Multiple-Bus Failo ver Mode KZPBA-CB (ID 7) Networks Memory Channel Interfaces KZPBA-CB (ID 6) Memory Channel (mca0) Member System 2 Memb.
.
4 T ruCluster Server System Configuration Using UltraSCSI Hard ware This chapter describes how to prepare systems for a T ruCluster Server cluster , using UltraSCSI hardware and the preferred method of radial configuration, including how to connect devices to a shared SCSI bus for the T ruCluster Server product.
This is especially critical if you will install tape devices on the shared SCSI bus. W ith the exception of the TZ885, TZ887, TL890, TL891, and TL892, tape devices can only be installed at the end of a shared SCSI bus. These tape devices are the only supported tape devices that can be terminated externally .
• Number of shared SCSI buses and the storage on each shared bus Using shared SCSI buses increases storage availability . Y ou can connect 32 shared SCSI buses to a cluster member . Y ou can use any combination of KZPSA-BB, KZPBA-CB, or KGPSA-BC/CA host bus adapters.
T able 4 – 1: Planning Y our Configuration (cont.) T o increase: Y ou can: Disk availability Mirror disks across shared buses. Use a RAID array controller . Shared storage capacity Increase the number of shared buses. Use a RAID array controller . Increase disk size.
6. Copy the appropriate release notes to your system disk. In this example, obtain the firmware release notes for the AlphaServer DS20 from the V ersion 5.6 Alpha Firmware Update CD-ROM: # cp /mnt/doc/ds20_v56_fw_relnote.txt ds20-rel-notes 7. Unmount the CD-ROM drive: # umount /mnt 8.
______________________ Note _______________________ The KZPSA-BB can be used in any configuration in place of the KZPBA-CB. The use of the KZPSA-BB is not mentioned in this chapter because it is not UltraSCSI hardware, and it cannot operate at UltraSCSI speeds.
T able 4 – 2: Configuring T ruCluster Server Har dware (cont.) Step Action Refer to: 4 Update the system SRM console firmware from the latest Alpha Systems Firmware Update CD-ROM.
The DWZZH contains a differential to single-ended signal converter for each hub port (sometimes referred to as a DWZZA on a chip, or DOC chip). The single-ended sides are connected together to form an internal single-ended SCSI bus segment.
Y our storage shelves or RAID array subsystems should be set up before completing this portion of an installation. Use the steps in T able 4 – 3 to set up a KZPBA-CB for a T ruCluster Server cluster that uses radial connection to a DWZZH UltraSCSI hub.
T able 4 – 3: Installing the KZPBA-CB f or Radial Connection to a D WZZH UltraSCSI Hub (cont.) Step Action Refer to: _____________________ Notes _____________________ Ensure that the SCSI ID that you use is distinct from all other SCSI IDs on the same shared SCSI bus.
Example 4 – 1: Displa ying Configuration on an AlphaServer DS20 (cont.) Core Logic Cchip DECchip 21272-CA Rev 2.1 Dchip DECchip 21272-DA Rev 2.0 Pchip 0 DECchip 21272-EA Rev 2.
Example 4 – 1: Displa ying Configuration on an AlphaServer DS20 (cont.) Bus 02 Slot 02: DE500-AA Network Controller ewa0.0.0.2002.0 00-06-2B-00-0A-48 PCI Hose 01 Bus 00 Slot 07: DEC PCI FDDI fwa0.
Example 4 – 3 shows the output from the show config console command entered on an AlphaServer 8200 system. Example 4 – 3: Displa ying Configuration on an AlphaServer 8200 >>> show config .
Example 4 – 4: Displa ying Devices on an AlphaServer 8200 (cont.) dkf4.0.0.1.1 DKF4 HSZ70 V70Z dkf5.0.0.1.1 DKF5 HSZ70 V70Z dkf6.0.0.1.1 DKF6 HSZ70 V70Z dkf100.1.0.1.1 DKF100 RZ28M 0568 dkf200.2.0.1.1 DKF200 RZ28M 0568 dkf300.3.0.1.1 DKF300 RZ28 442D polling for units on kzpsa0, slot 2, bus 0, hose1.
4.3.3.1 Displaying KZPBA-CB pk* or isp* Console En vironment V ariables T o determine the console environment variables to use, execute the show pk* and show isp* console commands. Example 4 – 5 shows the pk console environment variables for an AlphaServer DS20.
• on — T urns on both low 8 bits and high 8 bits • diff — Places the bus in differential mode The KZPBA-CB is a Qlogic ISP1040 module, and its termination is determined by the presence or absence of internal termination resistor SIPs RM1-RM8. Therefore, the pk*0_soft_term environment variable has no meaning and it may be ignored.
4.3.3.2 Setting the KZPBA-CB SCSI ID After you determine the console environment variables for the KZPBA-CBs on the shared SCSI bus, use the set console command to set the SCSI ID. For a T ruCluster Server cluster , you will most likely have to set the SCSI ID for all KZPBA-CB UltraSCSI adapters except one.
Figure 4 – 1: KZPBA-CB T ermination Resistor s Internal Wide Device Connector J2 Internal Narrow Device Connector P2 SCSI Bus Termination Resistors RM1-RM8 ZK-1451U-AI JA1 4 – 18 T r uCluster Ser .
5 Setting Up the Memor y Channel Cluster Interconnect This chapter describes Memory Channel configuration restrictions, and describes how to set up the Memory Channel cluster interconnect, including setting up a Memory Channel hub, Memory Channel optical converter (MC2 only), and connecting link cables.
____________________ Note _____________________ If you are installing SCSI or network adapters, you may wish to complete all hardware installation before powering up the systems to run Memory Channel diagnostics.
If you are upgrading from virtual hub mode to standard hub mode (or from standard hub mode to virtual hub mode), be sure to change the jumpers on all Memory Channel adapters on the rail.
T able 5 – 2: MC2 Jumper Configuration (cont.) Jumper: Description: Example: VH0: Pins 2 to 3 12 3 VH1: None needed; store the jumper on pin 1 or pin 3 12 3 J3: W indow Size 512 MB: Pins 2 to 3 12 3.
T able 5 – 2: MC2 Jumper Configuration (cont.) Jumper: Description: Example: J10 and J11: Fiber Optics Mode Enable Fiber Off: Pins 1 to 2 3 2 1 Fiber On: Pins 2 to 3 pins 3 2 1 a Increases the maximum sustainable bandwidth for 8x00 systems. If the jumpers are in this position for other systems, the bandwidth is decreased.
If you are setting up a redundant Memory Channel configuration, install the second Memory Channel adapter right after installing the first Memory Channel adapter . Ensure that the jumpers are correct and are the same on both modules. After you install the Memory Channel adapter(s), replace the system panels unless you have more hardware to install.
For use with the MC2 CCMAB adapter , the hub must be placed within 4 or 10 meters (the length of the BN39B link cables) of each system. If fiber optics is used in conjunction with the MC2 adapter , the hub may be placed up to 31 meters from the systems.
5.5.1.1 Connecting MC1 or MC1.5 Link Cables in Vir tual Hub Mode For an MC1 virtual hub configuration (two nodes in the cluster), connect the BC12N-10 link cables between the Memory Channel adapters installed in each of the systems. _____________________ Caution _____________________ Be very careful when installing the link cables.
Figure 5 – 1: Connecting Memory Channel Adapters to Hubs Memory Channel hub 1 Memory Channel hub 2 System A Memory Channel adapters Linecards ZK-1197U-AI 5.
Gently push the cable ’ s connector into the receptacle, and then use the screws to pull the connector in tight. The connector must be tight to ensure a good ground contact. If you are setting up redundant interconnects, all Memory Channel adapters in a system must have the same jumper setting, either VH0 or VH1.
Now you need to: • Set the CCMLB linecard jumpers to support fiber optics • Connect the fiber optics cable to a CCMFB fiber optics converter module • Install the CCMFB fiber optics converter mod.
There are two console level Memory Channel diagnostics, mc_diag and mc_cable : • The mc_diag diagnostic: – T ests the Memory Channel adapter(s) on the system running the diagnostic. – Runs as part of the initialization sequence when the system is powered up.
Example 5 – 1: Running the mc_cable T est >>> mc_cable 1 To exit MC_CABLE, type <Ctrl/C> mca0 node id 1 is online 2 No response from node 0 on mca0 2 mcb0 node id 1 is online 3 No res.
.
6 Using Fibre Channel Storage This chapter provides an overview of Fibre Channel, Fibre Channel configuration examples, and information on Fibre Channel hardware installation and configuration in a T ru64 UNIX or T ruCluster Server V ersion 5.0A configuration.
• A discussion on how you can use the emx manager ( emxmgr ) to display the presence of Fibre Channel adapters, target ID mappings for a Fibre Channel adapter , and the current Fibre Channel topology (Section 6.12). 6.1 Procedure for Installation Using Fibre Channel Disks Use the following procedure to install T ru64 UNIX V ersion 5.
10. Use the disklabel utility to label the disks used to create the cluster (Section 6.10). 11. Refer to the T ruCluster Server Software Installation manual and install the T ruCluster Server software subsets and run the clu_create command to create the first cluster member .
• Wwidmgr User ’ s Manual 6.2 Fibre Channel Overview Fibre Channel supports multiple protocols over the same physical interface. Fibre Channel is primarily a protocol-independent transport medium; therefore, it is independent of the function that it is used for .
is manufactured. An N_Port is connected directly to another N_Port in a point-to-point topology . An N_Port is connected to an F_Port in a fabric topology . NL_Port In an arbitrated loop topology , information is routed around a loop. The information is repeated by each intermediate port until it reaches its destination.
• Arbitrated loop (Section 6.2.2.3) ______________________ Note _______________________ Although it is possible to interconnect an arbitrated loop with fabric, hybrid configurations are not supported at the present time, and therefore not discussed in this manual.
connected by the fabric switching function, which routes the frame from one F_Port to another F_Port within the switch. Communication between two switches is routed between two expansion ports (E_Ports).
Figure 6 – 3: Arbitrated Loop T opology NL_P or t NL_P or t Node 1 Node 2 NL_P or t NL_P or t T ransmit Receiv e T ransmit Receiv e T ransmit Receiv e T ransmit Receiv e Node 3 Node 4 Hub ZK-1535U-AI ______________________ Note _______________________ The arbitrated loop topology is not supported by the T ru64 UNIX or T ruCluster Server products.
• The units are divided between an HSG80 port 1 and port 2. • If there are dual-redundant HSG80 controllers, controller A port 1 and controller B port 2 are normally active; controller A port 1 and controller B port 1 are normally passive. • If one controller fails, the other controller takes control and both its ports are active.
Y ou can, however , add the hardware for a second bus (another KGPSA, switch, and RA8000/ESA12000 with associated cabling) and use LSM to mirror across the buses.
If you consider the loss of a host bus adapter or switch, the configurations in Figure 6 – 6 and Figure 6 – 7 will provide better throughput than Figure 6 – 5 because you still have access to both controllers. W ith Figure 6 – 5, if you lose a host bus adapter or switch, you lose the use of a controller .
Figure 6 – 6: Multiple-Bus NSPOF Configuration Number 2 KGPSA Member System 2 KGPSA KGPSA DSGGA DSGGA Member System 1 KGPSA ZK-1707U-AI RA8000/ ESA12000 HSG80 HSG80 HSG80 11 22 AB 6 – 12 Using Fib.
Figure 6 – 7: Multiple-Bus NSPOF Configuration Number 3 KGPSA Member System 2 KGPSA KGPSA DSGGA DSGGA Member System 1 KGPSA ZK-1708U-AI RA8000/ ESA12000 HSG80 HSG80 HSG80 11 22 AB 6.4 Zoning and Cascaded Switches This section provides a brief overview of zoning and cascaded switches.
Figure 6 – 8: A Simple Zoned Configuration KGPSA KGPSA RA8000/ ESA12000 HSG80 HSG80 RA8000/ ESA12000 HSG80 HSG80 KGPSA KGPSA DSGGA SWITCH Cluster 1 Member System 1 Cluster 1 Member System 2 Cluster .
6.5 Installing and Configuring Fibre Channel Har dware This section provides information about installing the Fibre Channel hardware needed for a T ruCluster Server configuration accessing storage over the Fibre Channel.
you can manage the switch by way of a telnet session, SNMP , or the W eb. The DSGGA switch has slots to accommodate up to four (DS-DSGGA-AA) or eight (DS-DSGGA-AB) plug-in interface modules. Each interface module in turn supports two Giga Bit Interface Converter modules (GBIC).
5. T urn on the power . The switch runs a series of power-on self test (POST) tests. 6. Set the switch IP address and subnet mask (see Section 6.5.1.2.
Down — Downward triangle: Scrolls the menu down (which effectively moves up the list of commands) or decreases the value being displayed. ______________________ Note _______________________ When the.
2. Press Enter to display the first submenu item in the configuration menu, Ethernet IP address: Ethernet IP address: 10.00.00.10 -- The underline cursor denotes the selected address field. Use the up or down button to increase or decrease the displayed number .
6.5.1.2.3 Setting the DS-DSGGB-AA Ethernet IP Address and Subnet Mask from a PC or T erminal For the DS-DSGGB-AA switch, which does not have a front panel, you must use a connection to a W indows 95/98/NT PC or video terminal to set the Ethernet IP address and subnet mask.
T able 6 – 1: Telnet Session Default User Names for Fibre Channel Switches DSGGA DSGGB Description other n/a Allows you to execute commands ending in Show , such as dateShow and portShow .
# telnet 132.25.47.146 Return User admin Return Passwd Return :Admin> switchName fcsw1 Return :Admin> switchName Return fcsw1 :Admin> ______________________ Note _______________________ When you telnet to the switch the next time, the prompt will include the switch name, for example: fcsw1:Admin> 6.
GLM alignment pins, alignment tabs, and connector pins with the holes, oval openings, and board socket. Press the GLM into place. The KGPSA-CA does not use a GLM, it uses an embedded optical shortwave multimode Fibre Channel interface. 3. Install the KGPSA in an open 32- or 64-bit PCI slot.
P00>>> boot warning -- main memory zone is not free P00>>> init . . . P00>>> boot If you have initialized and booted the system, then shut down the system and try to use the wwidmgr utility , you may be prevented from doing so.
If, however , the current topology is LOOP , you have to change the topology to FABRIC to operate in a fabric. Y ou will never see the Nvram read failed message if the current topology is LOOP . The NVRAM has to have been formatted to change the current mode to LOOP .
P00>>> show dev . . . pga0.0.0.1.0 PGA0 WWN 1000-0000-c920-eda0 pgb0.0.0.2.0 PGB0 WWN 1000-0000-c920-da01 • Y ou can use the wwidmgr -show adapter command as follows: P00>>> wwidmgr -show adapter item adapter WWN Cur. Topo Next Topo [ 0] pga0.
____________________ Note _____________________ Do not use PV A ID 1: W ith Port-T arget-LUN (PTL) addressing, the PV A ID is used to determine the target ID of the devices on ports 1 through 6 (the LUN is always zero). V alid target ID numbers are 0 through 15, excluding numbers 4 through 7.
____________________ Note _____________________ Setting the controller variable CACHE_UPS for one controller sets it for both controllers. 10. From the maintenance terminal, use the show this and show other commands to verify that controllers have the current firmware version.
5 T akes the ports off line and resets the topology to prevent an error message when setting the port topology . 6 Sets fabric as the switch topology . 12. Enter the show connection command as shown in Example 6 – 1 to determine the HSG80 connection names for the connections to the KGPSA host bus adapters.
Example 6 – 1: Determine HSG80 Connection Names (cont.) HOST_ID=1000-0000-C921-086C ADAPTER_ID=1000-0000-C921-086C !NEWCON63 TRU64_UNIX OTHER 1 offline 0 HOST_ID=1000-0000-C921-0943 ADAPTER_ID=1000-.
your cluster member systems. If the operating system and offsets are incorrect, set them, then restart both controllers as follows: HSG80> set !NEWCON49 unit_offset = 0 1 HSG80> set !NEWCON49 operating_system = TRU64_UNIX 2 HSG80> restart other 3 HSG80> restart this 3 .
• In a subsystem with two controllers in transparent failover mode, the controller port IDs increment as follows: – Controller A and controller B, port 1 — worldwide name + 1 – Controller A an.
– If the configuration has been saved to disk (with the INITIALIZE DISKnnnn SAVE_CONFIGURATION or INITIALIZE storageset-name SAVE_CONFIGURATION option), you can restore it from disk with the CONFIGURATION RESTORE command.
• Cluster /var • Member boot disk (one for each cluster member system) • Quorum disk (if used) If you are installing only the operating system, you need only the T ru64 UNIX disk (and of course any disks for applications).
Example 6 – 2: Setting up the Mirror set (cont.) Config - Normal Termination HSG80> ADD MIRRORSET BOOT-MIR DISK 30200 40000 2 HSG80> ADD MIRRORSET CROOT-MIR DISK 30300 40100 2 HSG80> INITIA.
Example 6 – 2: Setting up the Mirror set (cont.) HSG80> HSG80> SHOW CROOT-MIR 11 Name Storageset Uses Used by ------------------------------------------------------------------------------ CRO.
Example 6 – 2: Setting up the Mirror set (cont.) HSG80> set d144 ENABLE_ACCESS_PATH = !NEWCON53,!NEWCON54,!NEWCON55,!NEWCON56 Warning 1000: Other host(s) in addition to the one(s) specified can still access this unit.
1 Use the CONFIG utility to configure the devices on the device side buses and add them to the controller configuration. The CONFIG utility takes about two minutes to complete. Y ou can use the ADD DISK command to add disk drives to the configuration manually .
14 Partition for cluster /usr filesystem. 15 Partition for cluster /var filesystem. 16 Assign a unit number to each partition. When the unit is created by the ADD UNIT command, disable access to all hosts. This allows selective access in case there are other systems or clusters connected to the same switch as our cluster .
that at this point, even though the table is filled in, we do not yet know the device names or dsk n numbers. T able 6 – 2: Con verting Storageset Unit Number s to Disk Names File System or Disk HSG80 Unit W orldwide Name User Define Identifier (UDID) Device Name dsk n Member 1 boot disk D131 6000-1FE1-0000-0D60- 0009-8080-0434-002F 131 dga131.
disk is unit D133 with a UDID 133. The UDID for the cluster member 1 boot disk is 131, and the cluster member 2 boot disk is 132. 2. Use the wwidmgr -clear all command to clear the stored Fibre Channel wwid1 , wwid2 , wwid3 , wwid4 , N1 , N2 , N3 , and N4 console environment variables.
[16] UDID:144 WWID:01000010:6000-1fe1-0000-0d60-0009-8080-0434-0028 (ev:none) [17] UDID:-1 WWID:01000010:6000-1fe1-0000-0ca0-0009-8090-0708-002b (ev:none) [18] UDID:-1 WWID:01000010:6000-1fe1-0000-0ca.
132 (cluster member 2). The device unit number is an alias for the worldwide name for the storage unit. • The reachability part of the display provides the followng: – The worldwide name for the s.
Example 6 – 3: Using the wwidmgr quickset Command to Set Device Unit Number (cont.) dgb131.1004.0.2.0 pgb0.0.0.2.0 5000-1fe1-0000-0d61 Yes P00>>> wwidmgr -quickset -udid 132 Disk assignment and reachability after next initialization: 6000-1fe1-0000-0d60-0009-8080-0434-002e via adapter: via fc nport: connected: dga133.
The disks are not reachable and you cannot boot until after the system is initialized. Note, that in the reachability portion of the display , the storagesets are reachable from KGPSA dga through two HSG80 ports and from KGPSA dgb through two HSG80 ports.
Example 6 – 4: Sample Fibre Channel Device Names (cont.) dgb132.1001.0.2.0 $1$DGA132 HSG80 V8.5F dgb132.1002.0.2.0 $1$DGA132 HSG80 V8.5F dgb132.1003.0.2.0 $1$DGA132 HSG80 V8.5F dgb132.1004.0.2.0 $1$DGA132 HSG80 V8.5F dgb133.1001.0.2.0 $1$DGA133 HSG80 V8.
• After a cluster member has been added to the cluster with clu_add_member (but before the member system is booted). _____________________ Note _____________________ Y ou do not use this procedure after using clu_create to create the first cluster member .
2. Set the bootdef_dev console environment variable to one of the boot path(s) that show up as connected. Ensure that you set the bootdef_dev variable appropriately for the system and boot disk.
Device Size Controller Disk Name in GB Type Model Location 1) dsk0 4.0 SCSI RZ2CA-LA bus-0-targ-0-lun-0 2) dsk15 1.0 SCSI HSG80 IDENTIFIER=133 3) dsk16 1.
For example, to ensure that you have a connected boot path in case of a failed host bus adapter or controller failover , choose device names for multiple host bus adapters and each controller port.
• For member system 2 boot disk: P00>>> set bootdef_dev dga132.1001.0.1.0,dga132.1002.0.2.0, dgb132.1001.0.1.0,dgb132.1002.0.2.0 POO>>> init .
# hwmgr -get attribute -a name -a dev_base_name | more Use the more search utility (/) to search for the worldwide name of the storageset you have set up for the particular disk in question.
6.10 Installing the T ruCluster Ser ver Software This section covers the Fibre Channel specific procedures you need to execute before running clu_create to create the first cluster member or clu_add_member to add subsequent cluster members.
P00>>> wwidmgr -quickset -udid 132 Disk assignment and reachability after next initialization: 6000-1fe1-0000-0d60-0009-8080-0434-0030 via adapter: via fc nport: connected: dga132.1001.0.1.0 pga0.0.0.1.0 5000-1fe1-0000-0d64 No dga132.1002.0.1.
Each path between a Fibre Channel host bus adapter in a host computer and an active host port on an HSG80 controller is a connection. During Fibre Channel initialization, when a controller becomes aware of a connection to a host bus adapter through a switch, it adds the connection to its table of known connections.
2. At the HSG80, set multiple-bus failover as follows. Note that before putting the controllers in multiple-bus failover mode, you must remove any previous failover mode: HSG80> SET NOFAILOVER HSG8.
!NEWCON62 TRU64_UNIX OTHER 1 210513 OL other 0 HOST_ID=1000-0000-C921-086C ADAPTER_ID=1000-0000-C921-086C !NEWCON63 TRU64_UNIX OTHER 1 offline 0 HOST_ID=1000-0000-C921-0943 ADAPTER_ID=1000-0000-C921-0.
P00>>> b. For each wwid n line, record the unit number (131, 132, and 133) and worldwide name for the storage unit. The unit number is the first field in the display (after wwid n ). The N n value is the HSG80 port being used to access the storage units (controller B, port 2).
of the wwidmgr -quickset command for the appropriate device (see Section 6.8). i. Repeat steps a through h on each system accessing devices on the HSG80. 6.12 Using the emx Manager to Display Fibre Channel Adapter Information The emx manager ( emxmgr ) utility was written for the T ruCluster Software Product V ersion 1.
The previous example shows four Fibre Channel devices on this SCSI bus. The Fibre Channel adapter in question, emx0 , at SCSI ID 7, is denoted by the presence of the emx0 designation. Use the emxmgr -t command to display the Fibre Channel topology for the adapter .
worldwide name) are provided. The Fibre Channel DID number is the physical Fibre Channel address being used by the N_Port. 2 A list of all other Fibre Channel devices on this SCSI bus, with their SCSI.
• Display the target ID mappings for a Fibre Channel adapter • Display the current Fibre Channel topology for a Fibre Channel adapter Y ou have already seen how you can perform these functions from the command line. The same output is available using the interactive mode by selecting the appropriate option (shown in the following example).
2. View adapter ’ s Target Id Mappings 3. Change Target ID Mappings d. Display Attached Adapters a. Change targeted adapter x. Exit ----> x # Using Fibre Channel Storage 6 – 63.
.
7 Preparing A TM Adapters The Compaq T ru64 UNIX operating system supports Asynchronous T ransfer Mode (A TM). T ruCluster Server supports the use of LAN emulation over A TM for client access.
Most data traffic in existing customer networks is sent over Local Area Networks (LANs) such as Ethernet or T oken Ring networks. The services provided by the LANs differ from those of A TM, for examp.
– Broadcast and Unknown Server (BUS): A BUS handles broadcast data sent by a LAN emulation client, all multicast data, and data sent by a LAN emulation client before the A TM address has been resolved. Figure 7 – 1 shows an A TM network with two emulated LANs.
Use the following steps to install an A TMworks adapter . See the A TMworks 350 Adapter Installation and Service guide for more information. Be sure to use the antistatic ground strap. 1. Remove the adapter extender bracket if the ATMworks 350 is to be installed in an AlphaServer 2100 system.
# /usr/sbin/setld -i | grep ATM • OSF A TMBASE: A TM Commands • OSF A TMBIN: A TM Kernel Modules Additionally , after the A TM subsets have been installed, verify that a new kernel has been built with the following kernel options selected ( /sbin/sysconfig -q atm ): • Asynchronous T ransfer Mode (A TM) • A TM UNI 3.
5. If you do not have an indication that confirms a correct cable connection, swap the transmit and receive connectors on one end of the cable and recheck the indicators. 6. If you still do not have a correct cable connection, you probably have a bad cable.
8 Configuring a Shared SCSI Bus for T ape Drive Use The topics in this section provide information on preparing the various tape devices for use on a shared SCSI bus with the T ruCluster Server product. ______________________ Notes ______________________ Section 8.
8.1.1 Setting the TZ88N-V A SCSI ID Y ou must set the TZ88N-V A switches before the tape drive is installed into the BA350 StorageW orks enclosure. The Automatic selection is normally used. The TZ88N-V A takes up three backplane slot positions. The physical connection is in the lower of the three slots.
T able 8 – 1: TZ88N-V A Switch Settings SCSI ID SCSI ID Selection Switches 1234 56 Automatic a Off Off Off On On On 0 Off Off Off Off Off Off 1 On Off Off Off Off Off 2 Off On Off Off Off Off 3 On O.
Figure 8 – 2: Shared SCSI Buses with SBB T ape Drives 1 2 4 5 DWZZB-VW, trilink connector, and H879 terminator DWZZA-VA, trilink, and H879 terminator DWZZA-VA and trilink AlphaServer 2100A T BA350 A.
Ensure that DWZZA jumper J2 or DWZZB jumpers W1 and W2 are installed to enable the single-ended termination. Remove the termination from the differential end by removing the five 14-pin SIP resistors. 2. Attach a trilink connector to the differential end of the DWZZA or DWZZB.
3, the SCSI ID is 2. If it is installed in slots 3, 4, and 5, the SCSI ID is 4. Figure 8 – 3 shows a view of the DS-TZ89N-VW showing the backplane interface connector and SCSI ID switch pack.
T able 8 – 2: DS-TZ89N-VW Switch Settings (cont.) SCSI ID SCSI ID Selection Switches 2 Off On Off Off Off Off Off Off 3 On On Off Off Off Off Off Off 4 Off Off On Off Off Off Off Off 5 On Off On Off.
8.2.3 Setting the DS-TZ89N-T A SCSI ID The DS-TZ89N-T A has a push-button counter switch on the rear panel to select the SCSI ID. It is preset at the factory to 15. Push the button above the counter to increment the SCSI ID (the maximum is 15); push the button below the switch to decrease the SCSI ID.
8.3 Compaq 20/40 GB DL T T ape Drive The Compaq 20/40 GB DL T T ape Drive is a Digital Linear T ape (DL T) tabletop cartridge tape drive capable of holding up to 40 GB of data per Compactape IV cartridge using 2:1 compression. It is capable of storing/retrieving data at a rate of up to 10.
Figure 8 – 4: Compaq 20/40 GB DL T T ape Drive Rear Panel + - 0 20/40 GB DL T T ape Drive SCSI ID Selector Switch SCSI ID + - 0 ZK-1603U-AI 8.3.2 Cabling the Compaq 20/40 GB DL T T ape Drive The Compaq 20/40 GB DL T T ape Drive is connected to a single-ended segment of the shared SCSI bus.
cable). Ensure that the trilink or Y cable at both ends of the differential segment of the shared SCSI bus is terminated with an HD68 differential terminator such as an H879-AA. The single-ended SCSI bus may be daisy chained from one single-ended tape drive to another with cable part number 146745-003 or 146776-003 (0.
Figure 8 – 5: Cabling a Shared SCSI Bus with a Compaq 20/40 GB DL T T ape Drive KZPBA-CB (ID 7) Memory Channel Interface Memory Channel KZPBA-CB (ID 6) Memory Channel Member System 2 Member System 1.
T able 8 – 3: Hardware Components Used to Create the Configuration Shown in Figure 8 — 5 (cont.) Callout Number Description 9 199629-002 or 189636-002 (1.8-meter cable) 10 341102-001 terminator a The maximum length of the BN38C (or BN38D) cable on one SCSI bus segment must not exceed 25 meters.
for use on a shared SCSI bus. The TZ885 in this figure has had the SCSI ID set to 0 (zero). T o configure the shared SCSI bus for use with a TZ885, follow these steps: 1. Y ou will need one DWZZA-AA or DWZZB-AA for each TZ885 tape drive. Ensure that the DWZZA jumper J2 or DWZZB jumpers W1 and W2 are installed to enable the single-ended termination.
Figure 8 – 6: Cabling a Shared SCSI Bus with a TZ885 DWZZA-VA, trilink connector, and H879 terminator DWZZA-VA and trilink connector Trilink connector and H879-AA terminator AlphaServer 2100A T BA35.
Figure 8 – 7: TZ887 DL T MiniLibrary Rear Panel + - 0 TZ887 ZK-1461U-AI SCSI ID SCSI ID Selector Switch + - 0 8.5.2 Cabling the TZ887 T ape Drive The TZ887 is connected to a single-ended segment of the shared SCSI bus. It is connected to a differential portion of the shared SCSI bus with a DWZZB-AA.
The single-ended SCSI bus may be daisy chained from one single-ended tape drive to another with BC19J cables, as long as the SCSI bus maximum length is not exceeded and there are sufficient SCSI IDs available. Ensure that the tape drive on the end of the bus is terminated with an H8574-A or H8890-AA terminator .
8.6 Preparing the TL891 and TL892 DL T MiniLibraries for Shared SCSI Usage ______________________ Note _______________________ T o achieve system performance capabilities, we recommend placing no more than two TZ89 drives on a SCSI bus, and also recommend that no shared storage be placed on the same SCSI bus with a tape library .
The first and second lines of the default screen show the status of the two drives (if present). The third line shows the status of the library robotics, and the fourth line is a map of the magazine, with the numbers from 0 to 9 representing the cartridge slots.
4. Select the tape drive (DL T0 Bus ID: or DL T1 Bus ID:) or library robotics (LIB Bus ID:) for which you wish to change the SCSI bus ID. The default SCSI IDs are as follows: • Lib Bus ID: 0 • DL T0 Bus ID: 4 • DL T1 Bus ID: 5 Use the up or down arrow button to select the item for which you need to change the SCSI ID.
SCSI bus without stopping all ASE services that generate activity on the bus. For this reason, we recommend that tape devices be placed on separate shared SCSI buses, and that there be no storage devices on the SCSI bus.
T o connect the drive robotics and one drive to one shared SCSI bus and the second drive to a second shared SCSI bus, follow these steps: 1. Connect a BN21K or BN21L between the last trilink connector on one shared SCSI bus to the leftmost connector (as viewed from the rear) of the TL892.
Figure 8 – 9: T ruCluster Server Cluster with a TL892 on T wo Shared SCSI Buses DWZZA-VA, trilink connector, and H879 terminator DWZZA-VA, trilink connector, and H879 terminator Library Robotics H87.
8.7.1 TL890 DL T MiniLibrary Expansion Unit Hardware The TL890 expansion unit is installed above the TL891/TL892 DL T MiniLibrary base units in a SW500, SW800, or RETMA cabinet. The expansion unit integrates the robotics in the individual modules into a single, coordinated library robotics system.
• Robotics control cables from each base module to the expansion unit: These cables have a DB-9 male connector on one end and a DB-9 female connector on the other end. Connect the male end to the Expansion Unit Interface connector on the base module and the female end to any Expansion Modules connector on the expansion unit.
Figure 8 – 10: TL890 and TL892 DL T MiniLibraries on Shared SCSI Buses TL892 TL892 TL890 Library Robotics DLT1 Expansion Modules Robotics Control cables Diag DLT2 Library Robotics DLT1 DLT2 H879-AA .
unit will not have control over the base module robotics when you power up the MiniLibrary system if you do not reconfigure the base modules as a slave. T o reconfigure a TL891/TL892 base module as a slave to the TL890 DL T MiniLibrary expansion unit, perform the following procedure on each base module in the system: 1.
7. After the selection stops flashing and the control panel indicates that the change is not effective until a reboot, press the Enter button. 8. When the Special Configuration menu reappears, turn the power switch off and then on to cycle the power .
control functions are carried out from the expansion unit control panel. This includes setting the SCSI ID for each of the tape drives present. T o set the SCSI IDs for the tape drives in a MiniLibrary configured with TL890/TL891/TL892 hardware, follow these steps: 1.
10. If there are other items you wish to configure, press the Escape button until the Configure submenu is displayed, then select the item to be configured. Repeat this procedure for each item you wish to configure. 11. If there are no more items to be configured, press the Escape button until the Default window is displayed.
T able 8 – 4: TL894 Default SCSI ID Settings (cont.) SCSI Device SCSI Address T ape Drive 2 4 T ape Drive 3 5 T o set the SCSI ID for the TL894 robotics controller , follow these steps: 1. Press and release the Control Panel ST ANDBY button and verify that the SDA (Status Display Area) shows System Off-line.
12. Press and release the up or down button and the SELECT button simultaneously , and verify that System On-line or System Off-line is displayed in the SDA. T o set the SCSI ID for each tape drive if the desired SCSI IDs are different from those shown in T able 8 – 4, follow these steps: 1.
14. Press and release the up or down button and the SELECT button simultaneously and verify that System On-line or System Off-line is displayed in the SDA. 8.8.3 TL894 T ape Library Internal Cabling The default internal cabling configuration for the TL894 tape library has the robotics controller and top drive (drive 0) on SCSI bus port 1.
other drive to be daisy chained. Use the SCSI jumper cable to connect the two drives and place them on the same SCSI bus. ______________________ Notes ______________________ W e recommend that you not place more than two TZ89 tape drives on any one SCSI bus in these tape libraries.
Figure 8 – 12 shows a sample T ruCluster Server cluster using a TL894 tape library . In the sample configuration, the tape library has been connected in the two-bus mode by jumpering tape drive 0 to tape drive 1 and tape drive 2 to tape drive 3 (See Section 8.
8.9 Preparing the TL895 DL T A utomated T ape Library for Shared SCSI Bus Usa g e The topics in this section provide information on preparing the TL895 Digital Linear T ape (DL T) automated tape library for use on a shared SCSI bus.
8.9.1 TL895 Robotic Controller Required Firmware Robotic firmware version N2.20 is the minimum firmware revision supported in a T ruCluster Server cluster . For information on upgrading the robotic firmware, see the Flash Download section of the TL895 DLT T ape Library Diagnostic Software User ’ s Manual .
4. T o change any of the configurations, press the Configure button. 5. Press the Select button until the item you wish to configure is highlighted. For the devices, select the desired device (library or drive) by scrolling through the devices with the arrow buttons.
T o reconfigure TL895 SCSI bus configuration, follow these steps: 1. Remove the SCSI bus cable from one drive to be daisy chained. 2. Remove the terminator from the other drive to be daisy chained. 3. Ensure that the drive that will be the last drive on the SCSI bus has a terminator installed.
8.9.4 Upgrading a TL895 The TL985 DL T automated tape library can be upgraded from two or five tape drives to seven drives with multiple DS-TL89X-UA upgrade kits.
______________________ Note _______________________ T o achieve system performance capabilities, W e recommend placing no more than two TZ89 drives on a SCSI bus. The TL893 and TL896 Automated T ape Libraries (A TLs) are designed to provide high-capacity storage and robotic access for the Digital Linear T ape (DL T) series of tape drives.
on adding additional cabinets. Up to five cabinets are supported with the T ruCluster Server . For T ruCluster Server , the tape cartridges in all the cabinets are combined into one logical unit, with.
T able 8 – 6: MUC Switch Functions Switch Function 1, 2, and 3 MUC SCSI ID if Switch 7 is down a 4 and 5 Must be down, reserved for testing 6 Default is up, disable bus reset on power up 7 Host sele.
T able 8 – 8: TL893 Default SCSI IDs SCSI Port Device Default SCSI ID MUC 2 C Drive 2 (top) 5 B Drive 1 (middle) 4 A Drive 0 (bottom) 3 T able 8 – 9: TL896 Default SCSI IDs SCSI Port Device Default SCSI ID MUC 2 D Drive 5 (top) 5 E Drive 4 4 F Drive 3 3 A Drive 2 5 B Drive 1 4 C Drive 0 (bottom) 3 8.
– The bottom shelf tape drive (SCSI ID 3) is on SCSI Port A and is also terminated on the drive with a 68-pin Micro-D terminator , part number 0415619.
– The lower bay top shelf tape drive (tape drive 2, SCSI ID 5) is on SCSI Port A and is terminated on the tape drive. – The lower bay middle shelf tape drive (tape drive 1, SCSI ID 4) is on SCSI Port B and is terminated on the tape drive.
8.10.6 Connecting the TL893 and TL896 Automated T ape Libraries to the Shared SCSI Bus The TL893 and TL896 Automated T ape Libraries (A TLs) have up to 3 meters of internal SCSI cabling on each SCSI bus.
Figure 8 – 16: Shared SCSI Buses with TL896 in Three-Bus Mode KZPBA-CB (ID 7) Memory Channel Interface Memory Channel KZPBA-CB (ID 6) DS-DWZZH-03 T T T 2 1 4 1 3 StorageW or ks RAID Arra y 7000 HSZ70 HSZ70 Controller B Controller A T KZPBA-CB (ID 7) 5 5 6 7 7 KZPBA-CB (ID 6) T T Network T NOTE: This drawing is not to scale.
• TL891 MiniLibrary System User ’ s Guide • TL881 MiniLibrary Drive Upgrade Procedure • Pass-Through Expansion Kit Installation Instructions The TL881 and TL891 Digital Linear T ape (DL T) MiniLibraries are offered as standalone tabletop units or as expandable rackmount units.
device and only works as a slave to the expansion unit. T o create a multimodule rackmount system, there must be one expansion unit and at least one base unit. The expansion unit has to be the top module in the configuration. The expansion unit works with either the TL881 or TL891 base unit.
TL881 or TL891 MiniLibrary in configurations set up for either maximum performance or maximum capacity . T able 8 – 10: TL881 and TL891 MiniLibrary Perf ormance and Capacity Comparison TL881 MiniLib.
T able 8 – 11: DL T MiniLibrary Part Numbers (cont.) DL T Library Component Number of T ape Drives T abletop/Rackmount P ar t Number TL891 DL T MiniLibrary Base Unit 1 Rackmount 120876-B21 TL891 DL .
The topics in this section provide information on preparing the TL881 or TL891 DL T MiniLibrary tabletop model or rackmount base unit for use on a shared SCSI bus. For complete hardware installation instructions, see the TL881 MiniLibrary System User ’ s Guide or TL891 MiniLibrary System User ’ s Guide .
____________________ Note _____________________ When you enter the Menu Mode, the Ready light goes out, an indication that the module is off line, and all medium changer commands from the host return a SCSI "not ready" status until you exit the Menu Mode and the Ready light comes on once again.
______________________ Note _______________________ The tape drive SCSI connectors are labeled DL T1 (tape drive 1) and DL T2 (tape drive 2). The control panel designation for the drives is DL T0 (tape drive 1) and DL T1 (tape drive 2).
3. Install an HD68 differential terminator (such as an H879-AA) on the right DL T1 connector (the fourth connector from the left). T o connect the drive robotics and two drives to a single shared SCSI bus, follow these steps: 1.
Figure 8 – 17: TL891 Standalone Cluster Configuration KZPBA-CB (ID 7) Memory Channel Interface Memory Channel KZPBA-CB (ID 6) Memory Channel Member System 2 Member System 1 DS-DWZZH-03 T T T 2 1 4 1.
T able 8 – 12: Hard ware Components Used to Create the Configuration Shown in Figure 8 – 17 (cont.) Callout Number Description 6 H879-AA terminator 7 328215-00X, BN21K, or BN21L cable c a The maximum length of the BN38C (or BN38D) cable on one SCSI bus segment must not exceed 25 meters.
connector on the data unit and the female end to any Expansion Modules connector on the expansion unit. _____________________ Note _____________________ It does not matter which interface connector a base unit or data unit is connected to.
Figure 8 – 18: TL881 DL T MiniLibrary Rackmount Configuration KZPBA-CB (ID 7) Memory Channel Interface Memory Channel KZPBA-CB (ID 6) Member System 1 DS-DWZZH-03 T T T 2 1 4 1 3 StorageW or ks RAID Arra y 7000 HSZ70 HSZ70 Controller B Controller A T KZPBA-CB (ID 7) 5 5 6 7 7 KZPBA-CB (ID 6) T T Network T NOTE: This drawing is not to scale.
T able 8 – 13: Hard ware Components Used to Create the Configuration Shown in Figure 8 – 18 Callout Number Description 1 BN38C or BN38D cable a 2 BN37A cable b 3 H8861-AA VHDCI trilink connector 4.
DLT0 Idle DLT1 Idle Loader Idle 0 >____ ______< 9 The default screen shows the state of the tape drives, loader , and number of cartridges present for this base unit. A rectangle in place of the underscore indicates that a cartridge is present in that location.
When the expansion unit comes up, it will communicate with each base and data unit through the expansion unit interface and inventory the number of base units, tape drives, data units, and cartridges present in each base and data unit.
• DL T3 Bus ID: 4 • DL T4 Bus ID: 5 • DL T5 Bus ID: 6 7. Press Enter when you have the item selected for which you wish to change the SCSI ID. 8. Use the up and down arrows to select the desired SCSI ID. Press the Enter button to save the new selection.
______________________ Note _______________________ These tape devices have been qualified for use on shared SCSI buses with both the KZPSA-BB and KZPBA-CB host bus adapters.
______________________ Notes ______________________ The ESL9326D Enterprise Library is cabled internally for two 35/70 DL T tape drives on each SCSI bus. It arrives with the library electronics cabled to tape drives 0 and 1. Every other pair of tape drives is cabled together (2 and 3, 4 and 5, 6 and 7, and so on).
Figure 8 – 19: ESL9326D Internal Cabling T T ape Drive 0 T ape Drive 1 T ape Drive 2 T ape Drive 3 T ape Drive 4 T ape Drive 5 T ape Drive 6 T ape Drive 7 T ape Drive 8 T ape Drive 9 T ape Drive 10 .
8.12.3.4 Connecting the ESL9326D Enterprise Library to the Shared SCSI Bus The ESL9326D Enterprise Library has 5 meters of internal SCSI bus cabling for each pair of tape drives.
______________________ Notes ______________________ Each ESL9326D Enterprise Library arrives with one 330563-001 HD68 terminator for each pair of tape drives (one SCSI bus). The kit also includes at least one 330582-001 jumper cable to connect the library electronics to tape drives 0 and 1.
.
9 Configurations Using External T ermination or Radial Connections to Non-UltraSCSI Devices This chapter describes the requirements for the shared SCSI bus using: • Externally terminated T ruCluster.
9.1 Using SCSI Bus Signal Con ver ters A SCSI bus signal converter allows you to couple a differential bus segment to a single-ended bus segment, allowing the mixing of differential and single-ended devices on the same SCSI bus to isolate bus segments for maintenance purposes.
but you would waste a disk slot and it would not work with a KZPBA-CB if there are any UltraSCSI disks in the storage shelves. The following sections discuss the DWZZA and DWZZB signal converters and the DS-BA35X-DA personality module.
Figure 9 – 1: Standalone SCSI Signal Con ver ter ZK-1050U-AI T T Single-ended Differential side with trilink attached side Figure 9 – 2 shows the status of internal termination for an SBB SCSI signal converter that has a trilink connector attached to the differential side.
______________________ Notes ______________________ S4-3 and S4-4 have no function on the DS-BA35X-DA personality module. See Section 9.3.2.2 for information on how to select the device SCSI IDs in an UltraSCSI BA356. Figure 9 – 3 shows the relative positions of the two DS-BA35X-DA switch packs.
Whenever possible, connect devices to a shared bus so that they can be isolated from the bus. This allows you to disconnect devices from the bus for maintenance purposes without affecting bus termination and cluster operation.
connector at a later time without affecting bus termination. This allows you to expand your configuration without shutting down the cluster . Figure 9 – 4 shows a BN21W-0B Y cable, which you may attach to a KZPSA-BB or KZPBA-CB SCSI adapter that has had its onboard termination removed.
Figure 9 – 5: HD68 T rilink Connector (H885-AA) FRONT VIEW REAR VIEW ZK-1140U-AI ______________________ Note _______________________ If you connect a trilink connector to a SCSI bus adapter , you may block access to an adjacent PCI slot. If this occurs, use a Y cable instead of the trilink connector .
9.3.1 BA350 Storage Shelf Up to seven narrow (8-bit) single-ended StorageW orks building blocks (SBBs) can be installed in the BA350. Their SCSI IDs are based upon the slot they are installed in. For instance, a disk installed in BA350 slot 0 has SCSI ID 0, a disk installed in BA350 slot 1 has SCSI ID 1, and so forth.
Figure 9 – 6: BA350 Internal SCSI Bus JA1 JB1 0 1 2 3 4 5 6 POWER (7) T J ZK-1338U-AI 9.3.2 BA356 Storage Shelf There are two variations of the BA356 used in T ruCluster Server clusters: the BA356 (non-UltraSCSI BA356) and the UltraSCSI BA356. An example of the non-UltraSCSI BA356 is the BA356-KC, which has a wide, single-ended internal SCSI bus.
select SCSI IDs 0 through 6, set the personality module address switches 1 through 7 to off. T o select SCSI IDs 8 through 14, set personality module address switches 1 through 3 to on and switches 4 through 7 to off. Figure 9 – 7 shows the relative location of the BA356 SCSI bus jumper , BA35X-MF .
Figure 9 – 7: BA356 Internal SCSI Bus JA1 JB1 0 1 2 3 4 5 6 POWER (7) J ZK-1339U-AI Note that JA1 and JB1 are located on the personality module (in the top of the box when it is standing vertically).
Figure 9 – 8: B A356 Jumper and T erminator Module Identification Pins Slot 6 Jumper Pin Slot 6 T er minator Pin Slot 1 Jumper Pin Slot 1 T er minator Pin ZK-1529U-AI 9.3.2.2 UltraSCSI BA356 Storage Shelf The UltraSCSI BA356 (DS-BA356-JF or DS-BA356-KH) has a single-ended, wide UltraSCSI bus.
BA356, as shown in Figure 9 – 8. W ith proper lighting you will be able to see a J or T near the hole where the pin sticks through. T ermination for both ends of the UltraSCSI BA356 internal, single-ended bus is on the personality module, and is always active.
Later sections describe how to install cables to configure an HSZ20, HSZ40, or HSZ50 in a T ruCluster Server configuration with two member systems. 9.4.
2. Y ou will need a DWZZA-V A signal converter for the BA350. Ensure that the DWZZA-V A single-ended termination jumper , J2, is installed. Remove the termination from the differential end by removing the five 14-pin differential terminator resistor SIPs.
SCSI bus (cable and BA356) under the 3-meter limit to still allow high speed operation. If you are using a DWZZB-VW , install it in slot 0 of the BA356.
must be used with a BA356 or UltraSCSI BA356 if more than five disks are required. The following sections provide the steps needed to connect two storage shelves and two member systems on a shared SCSI bus: • BA350 and BA356 (Section 9.4.2.1) • T wo BA356s (Section 9.
Figure 9 – 9: B A350 and BA356 Cabled for Shared SCSI Bus Usage ID 9 ID 10 ID 11 ID 12 ID 13 ID 14 or redundant power supply KZPSA-BB (ID 7) Memory Channel Interface Memory Channel KZPSA-BB (ID 6) Memory Channel Member System 2 Member System 1 ID 5 ID 4 ID 6 ID 3 ID 2 ID 1 Data disk Do not use for data disk.
T able 9 – 1: Hardware Components Used for Configuration Shown in Figure 8 – 9 and Figure 8 – 10 Callout Number Description 1 BN21W-0B Y cable 2 H879-AA terminator 3 BN21K (or BN21L) cable a 4 H885-AA trilink connector a The maximum combined length of the BN21K (or BN21L) cables must not exceed 25 meters.
Figure 9 – 10: T wo BA356s Cabled f or Shared SCSI Bus Usage ID 9 ID 10 ID 11 ID 12 ID 13 ID 14 or redundant power supply KZPSA-BB (ID 7) Memory Channel Interface Memory Channel KZPSA-BB (ID 6) Memory Channel Member System 2 Member System 1 ID 5 ID 4 ID 6 ID 3 ID 2 ID 1 Data disk Do not use for data disk.
T o prepare two UltraSCSI BA356 storage shelves for shared SCSI bus usage, (see Figure 9 – 11) follow these steps: 1. Complete the steps of Section 9.
Figure 9 – 11: T w o UltraSCSI BA356s Cabled for Shared SCSI Bus Usage ID 8 ID 9 ID 10 ID 11 ID 12 ID 13 PWR ID 5 PWR Clusterwide /, /usr , /var Member 1 Boot Disk Member 2 Boot Disk Quorum Disk Ult.
T able 9 – 2: Hardware Components Used for Configuration Shown in Figure 9 – 11 Callout Number Description 1 BN21W-0B Y cable 2 H879-AA HD68 terminator 3 BN38C (or BN38D) cable a 4 H8861-AA VHDCI .
9.4.3.1 Cabling an HSZ40 or HSZ50 in a Cluster Using External T ermination T o connect an HSZ40 or HSZ50 controller to an externally terminated shared SCSI bus, follow these steps: 1. If the HSZ40 or HSZ50 will be on the end of the shared SCSI bus, attach an H879-AA terminator to an H885-AA trilink connector .
Figure 9 – 12: Externall y T erminated Shared SCSI Bus with Mid-Bus HSZ50 RAID Array Controller s KZPSA-BB (ID 7) Network Memory Channel Interface Memory Channel KZPSA-BB (ID 6) Memory Channel Membe.
Figure 9 – 13: Externally T erminated Shared SCSI Bus with HSZ50 RAID Array Contr ollers at Bus End KZPSA-BB (ID 7) Network Memory Channel Interface Memory Channel KZPSA-BB (ID 6) Memory Channel Mem.
• Ensure that the W1 and W2 jumpers are installed to enable the single-ended termination on one end of the bus. ___________________ Note ___________________ The RAID Array 310 SCSI bus converter board is the same logic board used in the DWZZB signal converter .
5. Install the UltraSCSI hub in: • A StorageW orks UltraSCSI BA356 shelf (which has the required 180-watt power supply). • A non-UltraSCSI BA356 which has been upgraded to the 180-watt power supply with the DS-BA35X-HH option.
Figure 9 – 14: T ruCluster Server Cluster Using DS-D WZZH-03, SCSI Adapter with T erminators Installed, and HSZ50 T T T T HSZ50 HSZ50 T 1 DS-DWZZH-03 KZPSA-BB KZPSA-BB 1 AlphaServer Member System 1 AlphaServer Member System 2 T 2 1 4 3 2 ZK-1415U-AI T able 9 – 4 shows the components used to create the cluster shown in Figure 9 – 14.
Figure 9 – 15: T ruCluster Server Cluster Using KZPSA-BB SCSI Adapters, a DS-D WZZH-05 UltraSCSI Hub, and an HSZ50 RAID Array Controller T T T T T T HSZ50 HSZ50 T 1 DS-DWZZH-05 KZPSA-BB KZPSA-BB 1 1.
.
10 Configuring Systems for External T ermination or Radial Connections to Non-UltraSCSI Devices This chapter describes how to prepare the systems for a T ruCluster Server cluster when there is a need for external termination or radial connection to non-UltraSCSI RAID array controllers (HSZ40 and HSZ50).
Follow the steps in T able 10 – 1 to start the T ruCluster Server hardware installation procedure. Y ou can save time by installing the Memory Channel adapters, redundant network adapters (if applicable), and KZPSA-BB or KZPBA-CB SCSI adapters all at the same time.
The DWZZH-series UltraSCSI hubs are designed to allow more separation between member systems and shared storage. Using the UltraSCSI hub also improves the reliability of the detection of cable faults. A side benefit is the ability to connect the member systems ’ SCSI adapter directly to a hub port without external termination.
_____________________ Note _____________________ Y ou may have problems if the member system supports the bus_probe_algorithm console variable and it is not set to new .
T able 10 – 2: Installing the KZPSA-BB or KZPBA-CB f or Radial Connection to a D WZZH UltraSCSI Hub (cont.) Step Action Refer to: 2 Power down the system. Install a KZPSA-BB PCI-to-SCSI adapter or KZPBA-CB UltraSCSI host adapter in the PCI slot corresponding to the logical bus to be used for the shared SCSI bus.
T able 10 – 2: Installing the KZPSA-BB or KZPBA-CB f or Radial Connection to a D WZZH UltraSCSI Hub (cont.) Step Action Refer to: 6 Use the show pk* or show isp* console commands to determine the st.
T able 10 – 3: Installing a KZPSA-BB or KZPB A-CB for use with External T ermination Step Action Refer to: 1 Remove the KZPSA-BB internal termination resistors, Z1, Z2, Z3, Z4, and Z5.
T able 10 – 3: Installing a KZPSA-BB or KZPB A-CB for use with External T ermination (cont.) Step Action Refer to: 7 Use the show pk* or show isp* console commands to determine the status of the KZP.
T able 10 – 3: Installing a KZPSA-BB or KZPB A-CB for use with External T ermination (cont.) Step Action Refer to: TL890 with TL891/TL892 Section 8.7 TL894 Section 8.8 TL895 Section 8.9 TL893/TL896 Section 8.10 TL881/TL891 DL T MiniLibraries Section 8.
Example 10 – 1: Displa ying Configuration on an AlphaServer 4100 (cont.) CPU (4MB Cache) 3 0000 cpu0 CPU (4MB Cache) 3 0000 cpu1 Bridge (IOD0/IOD1) 600 0021 iod0/iod1 PCI Motherboard 8 0000 saddle0 .
Example 10 – 2: Displa ying Devices on an AlphaServer 4100 (cont.) dkd100.1.0.4.1 DKd100 RZ26N 0568 dkd200.1.0.4.1 DKd200 RZ26 392A dkd300.1.0.4.1 DKd300 RZ26N 0568 polling kzpsa0 (DEC KZPSA) slot 5, bus 0 PCI, hose 1 TPwr 1 Fast 1 Bus ID 7 kzpsa0.7.
Example 10 – 4: Displaying De vices on an AlphaServer 8200 >>> show device polling for units on isp0, slot0, bus0, hose0... polling for units on isp1, slot1, bus0, hose0... polling for units on isp2, slot4, bus0, hose0... polling for units on isp3, slot5, bus0, hose0.
10.1.4 Displaying Console En vironment V ariables and Setting the KZPSA-BB and KZPBA-CB SCSI ID The following sections show how to use the show console command to display the pk* and isp* console environment variables and set the KZPSA-BB and KZPBA-CB SCSI ID on various AlphaServer systems.
Example 10 – 5: Displaying the pk* Console Envir onment V ariables on an AlphaServer 4100 System (cont.) pke0_termpwr 1 pkf0_fast 1 pkf0_host_id 7 pkf0_termpwr 1 Compare the show pk* command display in Example 10 – 5 with the show config command in Example 10 – 1 and the show dev command in Example 10 – 2.
Example 10 – 6: Displa ying Console V ariables for a KZPBA-CB on an AlphaServer 8x00 System P00>>> show isp* isp0_host_id 7 isp0_soft_term on isp1_host_id 7 isp1_soft_term on isp2_host_id 7.
Example 10 – 7: Displa ying Console V ariables for a KZPSA-BB on an AlphaServer 8x00 System (cont.) pkc0_fast 1 pkc0_host_id 7 pkc0_termpwr on 10.1.4.2 Setting the KZPBA-CB SCSI ID After you determine the console environment variables for the KZPBA-CBs on the shared SCSI bus, use the set console command to set the SCSI ID.
10.1.4.3 Setting KZPSA-BB SCSI Bus ID, Bus Speed, and T ermination P o wer If the KZPSA-BB SCSI ID is not correct, or if it was reset to 7 by the firmware update utility , or you need to change the KZPSA-BB speed, or enable termination power , use the set console command.
10.1.4.4 KZPSA-BB and KZPBA-CB T ermination Resistor s The KZPSA-BB internal termination is disabled by removing termination resistors Z1 through Z5, as shown in Figure 10 – 1.
The boot sequence provides firmware update overview information. Use Return to scroll the text, or press Ctrl/C to skip the text. After the overview information has been displayed, the name of the default boot file is provided. If it is the correct boot file, press Return at the Bootfile: prompt.
.
A W orldwide ID to Disk Name Con ver sion Ta b l e T able A – 1: Con ver ting Storageset Unit Number s to Disk Names File System or Disk HSG80 Unit WWID User Define Iden- tifier (UDID) Device Name d.
.
Index A ACS V8.5 ,2 – 4 arbitrated loop ,6 – 7 AT L TL893 ,8 – 40, 8 – 41 TL896 ,8 – 40, 8 – 41 AT M atmconfig command ,7 – 4 connecting cables ,7 – 4 installation ,7 – 1 LANE ,7 –.
TL892 ,8 – 20, 8 – 24 TL893 ,8 – 47 TL894 ,8 – 34 TL895 ,8 – 40 TL896 ,8 – 47 TZ885 ,8 – 13 TZ887 ,8 – 16 TZ88N-T A ,8 – 4 TZ88N-V A ,8 – 3 changing HSG80 failover modes ,6 – 55 .
clusterwide /usr ,1 – 10 clusterwide /var ,1 – 10 clusterwide root ,1 – 10 member boot ,1 – 10 quorum ,1 – 10 disklabel ,6 – 53 displaying device information KZPBA-CB ,4 – 9t, 10 – 5t,.
configuring ,2 – 5 port configuration ,2 – 5 replacing controllers of ,6 – 32 transparent failover mode ,2 – 5 unit configuration ,2 – 5 ESL9000 series tape library ( See ESL9326D ) ESL9326D.
supported Y cables ,2 – 1 terminators ,2 – 11 trilink connectors ,2 – 11 host bus adapters ( See KGPSA, KZPBA-CB, KZPSA-BB ) HSG80 controller ACS ,2 – 4 changing failover modes ,6 – 55 confi.
KZPSA-BB displaying device information , 10 – 5t, 10 – 7t installation ,1 0 – 3 restrictions ,2 – 6 setting bus speed ,1 0 – 17 setting SCSI ID ,1 0 – 17 setting termination power ,1 0 –.
O optical cable ,6 – 16 optical converter cable connection ,5 – 6 installation ,5 – 6 P part numbers ESL9326D ,8 – 65 partitioned storagesets ,3 – 18 performance improving ,4 – 2 personali.
( See cables ) requirement ,2 – 10 SCSI controllers bus speed for ,3 – 5 SCSI ID selection ,9 – 17 BA356 ,9 – 16 SCSI IDs BA350 ,9 – 9 BA350 storage shelves ,9 – 15 BA356 ,9 – 11, 9 – .
SBB ,9 – 2 single-ended termination ,9 – 3 standalone ,9 – 2 terminating ,9 – 2 termination ,9 – 3 single-ended SCSI buses description of ,3 – 4 single-ended transmission definition ,3 –.
setting SCSI ID ,8 – 30 TL895 cabling ,8 – 40 TL896 ,8 – 40, 8 – 41 cabling ,8 – 44, 8 – 47 MUC switch functions ,8 – 42 setting SCSI ID ,8 – 43 transparent failover ,1 – 14, 3 – 1.
Y Y cables connecting devices with ,9 – 6 supported ,2 – 10 Index – 11.
.
How to Order T ru64 UNIX Documentation Y ou can order documentation for the T ru64 UNIX operating system and related products at the following W eb site: http://www.
.
Reader ’ s Comments T ruCluster Server Hardware Configuration AA-RHGWB-TE Compaq welcomes your comments and suggestions on this manual. Y our input will help us to write documentation that meets your needs.
UBPG PUBLICATIONS MANAGER Do Not Cut or Tear - Fold Here Do Not Cut or Tear - Fold Here and Tape NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES FIRST CLASS MAIL PERMIT NO.
Een belangrijk punt na aankoop van elk apparaat Compaq AA-RHGWB-TE (of zelfs voordat je het koopt) is om de handleiding te lezen. Dit moeten wij doen vanwege een paar simpele redenen:
Als u nog geen Compaq AA-RHGWB-TE heb gekocht dan nu is een goed moment om kennis te maken met de basisgegevens van het product. Eerst kijk dan naar de eerste pagina\'s van de handleiding, die je hierboven vindt. Je moet daar de belangrijkste technische gegevens Compaq AA-RHGWB-TE vinden. Op dit manier kan je controleren of het apparaat aan jouw behoeften voldoet. Op de volgende pagina's van de handleiding Compaq AA-RHGWB-TE leer je over alle kenmerken van het product en krijg je informatie over de werking. De informatie die je over Compaq AA-RHGWB-TE krijgt, zal je zeker helpen om een besluit over de aankoop te nemen.
In een situatie waarin je al een beziter van Compaq AA-RHGWB-TE bent, maar toch heb je de instructies niet gelezen, moet je het doen voor de hierboven beschreven redenen. Je zult dan weten of je goed de alle beschikbare functies heb gebruikt, en of je fouten heb gemaakt die het leven van de Compaq AA-RHGWB-TE kunnen verkorten.
Maar de belangrijkste taak van de handleiding is om de gebruiker bij het oplossen van problemen te helpen met Compaq AA-RHGWB-TE . Bijna altijd, zal je daar het vinden Troubleshooting met de meest voorkomende storingen en defecten #MANUAl# samen met de instructies over hun opplosinge. Zelfs als je zelf niet kan om het probleem op te lossen, zal de instructie je de weg wijzen naar verdere andere procedure, bijv. door contact met de klantenservice of het dichtstbijzijnde servicecentrum.