Gebruiksaanwijzing /service van het product DPJ72LC4 van de fabrikant Anaheim
Ga naar pagina of 87
DPJ72LC2, DPJ72LC3 and DPJ72LC4 MANUAL Computer Numerical Control for Windows Version 1.2 User’s Guide 910 E. Orangefair Lane Anaheim CA 92801 (714)992-6990 Fax: (714)992-0471 email: info@anaheimautomation.
Table of Contents GETTING STARTED .......................................................................................................................................... 1 T HANK Y OU ................................................................
G and M Code Settings ................................................................................................................................. 38 SYSTEM PROGRAMMING .............................................................................
.
Section Section 1 1 Getting Started Getting Started 1 1 1. Getting Started Thank You Thank you for purchasing Anaheim Automation’s LC controls, the affordable, powerful CNC control system for Windows . No other CNC system is easier to set up and use than the LC.
Section Section 1 1 Getting Started Getting Started 2 2 Installing LC It’s a good idea to make a working copy of the LC software disks and put the originals away in a safe place, before installing the program. Then if the working copy is damaged or lost, you can easily replace it.
Section Section 1 1 Getting Started Getting Started 3 3 Choosing Commands A command is an instruction that tells the LC to perform a task. You can choose a command by: 1. Choosing a command from a menu with your mouse. 2. Choosing a command from a menu with your keyboard.
Section Section 1 1 Getting Started Getting Started 4 4 Pull-Down Menus A pull-down menu is a list of commands that appear when you select either a menu or a down-arrow icon. Text Boxes Text boxes are areas in which you type either a name or a value. Command Buttons Command buttons perform a specific task when selected.
Section Section 1 1 Getting Started Getting Started 5 5 System Safety If you do not understand and agree with all of the above safety guidelines, do not use this product. 1. Never let the machine run unattended. 2. Any person near a running machine tool must wear safety goggles.
Section Section 1 1 Getting Started Getting Started 6 6 About this Manual Anaheim Automation’s LC software is a unique Windows application, so you’ll need some instruction to get started.
Section Section 2 2 Main Screen Features Main Screen Features 7 7 2. Main Screen Features The main screen is shown below. An explanation of each area of the screen follows. l Pull Down Menu Bar This area contains the main menu headings for many system commands.
Section Section 2 2 Main Screen Features Main Screen Features 8 8 Port, and displays the program in the Program Listing Box. By default, the dialog box displays files with an “.AGC ” extension. Close G-Code – Closes the open G-Code file. Editor - Opens the editor dialog box and displays the current G-Code file.
Section Section 2 2 Main Screen Features Main Screen Features 9 9 Controller Menu Online - Establishes communications with the Controller. Once communications are established, the LC software places a check mark next to this menu item.
Section Section 2 2 Main Screen Features Main Screen Features 10 10 Input Status - Shows the current status of the input lines. The following dialog box is displayed:.
Section Section 2 2 Main Screen Features Main Screen Features 11 11 Output Control - Allows you to change the state of any output line. The following dialog box is displayed: 4 To change the state of an output line 1. Choose On or Off from the Status pull-down menu for a given output line.
Section Section 2 2 Main Screen Features Main Screen Features 12 12 View Menu Scale to Fit - Causes the tool path of the current G-Code File to expand as much as possible within the Tool Path View Port. When this option is not chosen, the Tool Path View Port displays the entire work envelope.
Section Section 2 2 Main Screen Features Main Screen Features 13 13 Program Displays the coordinates of the current position of the tool relative to Program Zero . Machine Displays the coordinates of the current position of the tool relative to Machine Zero .
Section Section 2 2 Main Screen Features Main Screen Features 14 14 Contract Button - Causes the Tool Position Box to display all four coordinate systems simultaneously. Set Button - Sets the X,Y and Z coordinates of the chosen coordinate system to any value.
Section Section 2 2 Main Screen Features Main Screen Features 15 15 4 To zero all axes. 1. Choose the Zero All button to zero all of the coordinates simultaneously. Tool Path View Port The figure below shows the Tool Path View Port. The XY Grid represents an aerial view of the tool envelope.
Section Section 2 2 Main Screen Features Main Screen Features 16 16 Control Box The Control Box, shown below, contains all of the controls to move the machine tool. There are four modes: G-Code - Moves the tool along the tool path specified by a G-Code program.
Section Section 2 2 Main Screen Features Main Screen Features 17 17 G-Code Mode G-Code mode provides controls to move the tool as directed by the current G- Code program.
Section Section 2 2 Main Screen Features Main Screen Features 18 18 program had been stopped in the middle of a G-Code line, choosing the Start button will begin execution exactly where the program stopped. Note that all moves begin with ramping when necessary.
Section Section 2 2 Main Screen Features Main Screen Features 19 19 Fast - Sets the jog rate to the fast jog rate specified in the Feedrate/Ramping Setup dialog box. Point Mode Point mode provides controls for moving the tool to the XYZ position you enter at the feedrate you specify.
Section Section 2 2 Main Screen Features Main Screen Features 20 20 Coord - The tool will move to the XYZ position in program coordinates, machine coordinates, relative coordinates, or incrementally from the current position of the tool, depending on the option you select in this pull-down menu.
Section Section 2 2 Main Screen Features Main Screen Features 21 21 Clear Machine Zero - Clears the current Machine Zero settings. This button is useful when you set Machine Zero manually (using the Zero button in the Tool Position Box) and need to make a correction to the Machine Zero location.
.
Section Section 3 3 Initial Setup Initial Setup 23 23 3. Initial Setup This section describes how to set up the LC for use with your machine tool. It’s very important that the software and hardware are set up properly before you attempt to operate the machine tool.
Section Section 3 3 Initial Setup Initial Setup 24 24 Software Setup The Setup File All software settings are stored in a “setup” file, which by default has a “.STP” extension. Before you start, you’ll need to open the appropriate setup file.
Section Section 3 3 Initial Setup Initial Setup 25 25 COM 4 depending on how many serial ports and serial devices you have, such as a modem. Once you determine the serial port, choose it from the Serial Port pull-down menu. 3. The Baud Rate is the speed at which the LC communicates across the serial port with the Controller.
Section Section 3 3 Initial Setup Initial Setup 26 26 10. The LC software can be set up in either English (inch) or Metric (mm) mode. Choose the appropriate system from the Display Units pull-down menu. 11. The G-Code File Extension text box makes opening G-Code programs more convenient.
Section Section 3 3 Initial Setup Initial Setup 27 27 revolution, a 0.9 ° Stepper Motor will have 400 full steps per revolution, and so on. This number is a characteristic of the stepper motor and is independent of the Stepper Motor Driver or the Step Mode.
Section Section 3 3 Initial Setup Initial Setup 28 28 Feedrate and Ramping Settings Every machine tool will vary as to how fast it can move each axis without losing steps. Losing steps means that even though the stepper motor gets the signal to move a step, it isn’t able to move the step, and accuracy is lost.
Section Section 3 3 Initial Setup Initial Setup 29 29 7. Enter 70% of the value you found in the Max Unramped Feedrate text box for the X axis, then choose OK. 8. Repeat this process for all axes. 4 To Set the Maximum Feedrates After finding the maximum unramped feedrates, you’re ready to find the maximum feedrates achievable with ramping.
Section Section 3 3 Initial Setup Initial Setup 30 30 1. Choose Feedrate/Ramping from the Setup Menu. The Feedrate/Ramping Setup dialog box will appear. 2. Enter 10,000 full steps/sec/sec in the Ramping Rate text box for the X axis. (This is an average ramping rate.
Section Section 3 3 Initial Setup Initial Setup 31 31 3. Run the program and notice if the motor loses steps. If so, increase the Direction Change Delay. Otherwise decrease the number. 4. Repeat the above process until you reach a reasonable delay time that eliminates any motor slippage.
Section Section 3 3 Initial Setup Initial Setup 32 32 4 To Set Machine Zero Using Home Switches 1. Choose Machine Tool from the Setup Menu. The Machine Tool Setup dialog box will appear. 2. Make sure you’ve entered correctly the home switch setup parameters as described in the Machine Tool Settings section of this manual.
Section Section 3 3 Initial Setup Initial Setup 33 33 moving parts on each axis. This will help you “eye-ball” the same home position again. 6. Choose the Set button next to the “Machine” label in the Tool Position Box. Then choose the Zero All button in the Set Machine Coordinates dialog box.
Section Section 3 3 Initial Setup Initial Setup 34 34 Tooling Settings Anaheim Automation’s LC software provides for a tool library of up to 100 tools. Each tool has an associated tool number, description and length offset. The length offset is used when tool length compensation (G43 or G44) is used in a G- Code program.
Section Section 3 3 Initial Setup Initial Setup 35 35 Input Line Settings Anaheim Automation’s LC software can test up to 8 input lines wired to limit/home switches or general safety switches (such as a door switch on a safety enclosure).
Section Section 3 3 Initial Setup Initial Setup 36 36 purpose safety switch, choose Safety and enter a Description. If the line is unused, choose Unused. (Note: The “Control” option is not used by the current version of the LC controller.) 3. Repeat for all 8 input lines.
Section Section 3 3 Initial Setup Initial Setup 37 37 4. Choose Before or After from the Before/After Move pull-down menu. If you choose Before and there is a machine tool move command on the same program line as the M-Code, the M-code will be executed before the move.
Section Section 3 3 Initial Setup Initial Setup 38 38 Low Step Pulse High Step Pulse Step Pulse Width +5 V 0 V +5 V 0 V 3. In the Step Pulse Width text box, type the duration of the step pulse in microseconds.
Section Section 3 3 Initial Setup Initial Setup 39 39 2. Check the Ignore G54 checkbox if you want the LC to ignore this command in a G-Code program. The LC does not currently support G54. If you choose to ignore G54, make certain any G-Code program you run does not rely on G54 to position the machine tool.
.
Section Section 4 4 System Programming System Programming 41 41 4. System Programming Anaheim Automation’s LC software reads a subset of ANSI standard G-Code to control machine tool movement. This section describes how to bring a G-Code file into the LC, the G-Codes supported, and a brief explanation of their use.
Section Section 4 4 System Programming System Programming 42 42 3. In the Drives pull-down menu choose the drive that contains the file. 4. In Folders list box, double-click the name of the folder that contains the file. Continue double-clicking subfolders until you open the subfolder that contains the file.
Section Section 4 4 System Programming System Programming 43 43 size of the original geometry defined in the DXF file. Note that the values you enter for positioning the Z axis are unaffected by the scale factor. 8. Decimals - The number of decimal places to use for all coordinates.
Section Section 4 4 System Programming System Programming 44 44 Using the Program Editor The LC software provides a handy editor for creating or modifying G-Code Programs. If you need a more feature-rich editor for your programming, you can also use your own editor such as WordPad (which comes standard with Windows 95), or Microsoft Word, etc.
Section Section 4 4 System Programming System Programming 45 45 1. Choose Open G-Code from the editor’s File menu. The Open G-Code File dialog box appears. 2. In the “List files of type” pull-down menu, choose the type of file you are looking for.
Section Section 4 4 System Programming System Programming 46 46 G and M Codes Supported G00 Rapid Tool Positioning G01 Linear Interpolated Cutting Move G02 Clockwise Circular Cutting Move (XY Plane) G.
Section Section 4 4 System Programming System Programming 47 47 Mode Most G-code commands supported by LC are modal , meaning they put the system into a particular mode of operation and need not be repeated on every program line. A modal command stays in effect until another command changes the mode.
Section Section 4 4 System Programming System Programming 48 48 an incremental move, the ending point is defined relative to the current tool location.
Section Section 4 4 System Programming System Programming 49 49 G01 Linear Interpolated Cutting Move The G01 command moves the tool to the designated XYZ Program coordinate at the designated feedrate using 3-Axis linear interpolation. Example: G01 X2.
Section Section 4 4 System Programming System Programming 50 50 G01 X1.0 Y1.0 F3.0 Moves the tool directly to the Program Coordinates X=1.0, Y=1.0 at a feedrate of 3.0 in/min. G02 X3.0 Y3.0 I1.0 J1.0 Moves the tool using clockwise circular interpolation to the Program Coordinates X=3.
Section Section 4 4 System Programming System Programming 51 51 +X +Y G02 Clockwise +X +Z G02 Clockwise +Y +Z G02 Clockwise G03 Counter Clockwise Circular Cutting Move The G03 command is identical to the G02 command, but it moves the tool in a counter clockwise arc instead of a clockwise arc.
Section Section 4 4 System Programming System Programming 52 52 G04 Dwell The G04 command causes the program to dwell or wait for a specified amount of time. The time to wait is specified by the letter “X” immediately followed by the number of seconds.
Section Section 4 4 System Programming System Programming 53 53 If the move contains positive Z movement, the machine first moves up in the Z axis and then moves across in the XY plane. If the move contains negative Z movement, the machine first moves across in the XY plane and then moves down in the Z axis.
Section Section 4 4 System Programming System Programming 54 54 G28 Rapid move in the Z axis to Machine Coordinate Z=-1 followed by a rapid move in the XY plane to Machine Coordinate X=1, Y=1 G29 X2 Y.
Section Section 4 4 System Programming System Programming 55 55 M06 T3 Pauses program, displays dialog informing operator to change to tool number 3 Note: For compatibility reasons, the T command can be used on any line prior to the M06 command; it does not need to be on the same line as M06.
Section Section 4 4 System Programming System Programming 56 56 • The G43, G44 and G49 commands are modal, so the current tool offset remains active until LC executes another tool offset command, or until LC cancels tool offset as described above. Note that you may only use one type of tool length compensation (G43 or G44) in a G-Code program.
Section Section 4 4 System Programming System Programming 57 57 The first tool used in the program is tool #1, so it is selected in the Current Tool pull-down menu on the main screen. The tool change position is defined as Machine Coordinates X=2, Y=2, Z=0.
Section Section 4 4 System Programming System Programming 58 58 Y=3, Z=4.5. The Machine Coordinates remain unchanged at X=3, Y=3, Z=0. G29 X4 Y4 Z0 Move the X an d Y axes across and the Z axis down to Program Coordinates X=4, Y=4, Z=0, Machine Coordinates X=4, Y=4, Z=-4.
Section Section 4 4 System Programming System Programming 59 59 Example: G01 X1.0 Y3.0 Z-1.5 F12 Moves the tool directly to the Program coordinate X=1.0, Y=3.0, Z=-1.5. G52 X3 Y-7 Z0 Activates a local coordinate system with origin at X=3, Y=-7, Z=0 relative to Program Zero.
Section Section 4 4 System Programming System Programming 60 60 G02 X1.0 Y-1.0 I0.5 J-0.5 Moves the tool using counter-clockwise circular interpolation to the Program coordinate X=3.0, Y=4.0, Z=-2.0 with a center point at Program coordinate X=2.5, Y=4.
Section Section 4 4 System Programming System Programming 61 61 The subroutine definition begins with the letter "O" followed immediately by the subroutine name with no spaces.
Section Section 4 4 System Programming System Programming 62 62 (Move to beginning of the next feature) G00 X1.0 Y3.0 (Ready to move Z axis down) G00 Z-1.
Section 5 Tutorial Section 5 Tutorial 5. Tutorial Starting LC Software Windows 3.1 or 3.11 To start LC, double-click on the LC icon in the LC Program Group. A dialog will appear asking you if you want to start with the Controller online or offline. At this point, choose the No, Start Offline button.
Section 5 Tutorial Section 5 Tutorial 3. Select the drive and directory where the setup file is located, then select the file and choose OK. Some setup files are supplied for various mills and lathes. If a setup file is not available for your machine, select LCXXX.
Section 5 Tutorial Section 5 Tutorial Notice how the G-Code listing appeared in the Program Listing Box and a red outline of the tool path appeared in the Tool Path View Port. Viewing the Tool Path There are two viewing modes for the tool path: the size of the entire machine tool envelope and scale to fit.
Section 5 Tutorial Section 5 Tutorial The coordinates previously shown as N/A will now be zeroed and a light blue box will outline the entire tool envelope in the Tool Path View Port. To view in scale to fit mode, choose Scale to Fit from the View menu.
Section 5 Tutorial Section 5 Tutorial Now let’s get familiar with the Tool Path View Box. Here are some important features: Red Lines - Represent the entire tool path of the part to be cut. Green Dot - Represents Program Zero, the origin of any G-Code program.
Section 5 Tutorial Section 5 Tutorial 4. Choose the Start button and watch the blue tool move down the Z axis scale. Also note that LC has highlighted the next line in the Program Listing Box, indicating it has fully executed the first line. 5. Choose the Start button again.
Section 5 Tutorial Section 5 Tutorial Connecting the Machine Online Now you are ready to communicate with the Controller. In this step we will put LC into online mode.
Section 5 Tutorial Section 5 Tutorial X+ Ctrl + Right Arrow Key X- Ctrl + Left Arrow Key Y+ Ct rl + Up Arrow Key Y- Ctrl + Down Arrow Key Z+ Ctrl + Page Up Key Z- Ctrl + Page Down Key 4. Try the same for all directions on all axes, making sure you have enough room in the direction of travel before you choose each Axis Jog button.
Section 5 Tutorial Section 5 Tutorial 2. Choose the Clear Machine Zero button. This will clear the machine coordinates and remove the light blue Machine Tool Envelope. 3. Choose the Jog button in the Control Box. This will put LC into jog mode. 4. Jog the tool to 1/10” from the top of the Z axis.
Section 5 Tutorial Section 5 Tutorial 9. Now choose the Start button. Notice how the machine first moved the Z Axis up and then performed 2-axis linear interpolation for the X and Y axes. Setting Program Zero on the Machine Tool Program Zero is the origin to which all Program coordinates in the G-Code file are referenced.
Section 5 Tutorial Section 5 Tutorial 2. Make sure there is enough room on all axes of the machine to run the current G-Code file from the program zero point. The LCBLT.AGC program needs +2.125 inches on the X axis, +1.625 inches on the Y axis and -.55 inches on the Z axis.
Section 5 Tutorial Section 5 Tutorial the program, you can start exactly where you left off by choosing the Start button. You may want to try this for practice. Cutting the Part Assuming everything was fine in the previous step, we are ready to cut an actual part.
Section 7 Driver Section 7 Driver 6. I/O CONNECTIONS WIRING BE VERY CAREFUL WHEN DOING ANY WIRING. IMPROPER WIRING WILL DAMAGE THE MOTOR SIGNAL GENERATOR. The receptacle that plugs unto this connector is a Molex-Waldom Mini –Fit Jr. Series 16 pin receptacle (part number 39-01-2160), the female pins (part number 39-00-0039).
Section 7 Driver Section 7 Driver BE VERY CAREFUL WHEN DOING ANY WIRING. IMPROPER WIRING WILL DAMAGE THE MOTOR SIGNAL GENERATOR. The output lines are all initialized to low (0V) when you turn on the Motor Signal Generator. The receptacle that plugs unto this connector is a Molex-Waldom Mini –Fit Jr.
Section 7 Driver Section 7 Driver 7. Driver (BLD72 SERIES DRIVER) BILEVEL DRIVE The basic function of a step motor driver is to provide the rated motor phase current to the motor windings in the shortest possi ble time. The bilev el driver uses a high voltage to get a rapid rate of current rise in the motor windings in the least amount of time.
Section 7 Driver Section 7 Driver SETTING THE KICK CURRENT The Kick Current should be set to the Motor’s Rated Unipolar Current. For example, a 34D309 is rated for 4.5A, so the Kick Current Potentiometer would be set somewhere between the 4A and 5A indication.
Section 7 Driver Section 7 Driver.
.
Section Section 8 8 Glossary Glossary 81 81 8. Glossary Backlash - The amount of motor movement that occurs without table movement when changing directions. This is usually due to the amount of “slop” between the nut and the screw in the drive system.
Section Section 8 8 Glossary Glossary 82 82 outside of it. The machine tool envelope can be disabled by clicking on the Clear Machine Zero button in Home mode. Machine Zero - The origin (X,Y,Z = 0,0,0) of useful space within the machine tool envelope.
Section Section 8 8 Glossary Glossary 83 83 Relative Coordinates - The XYZ position of the tool on the CNC machine relative to the point at which the Relative Coordinates were zeroed. The relative coordinate system is general purpose and may be used for anything you choose.
Een belangrijk punt na aankoop van elk apparaat Anaheim DPJ72LC4 (of zelfs voordat je het koopt) is om de handleiding te lezen. Dit moeten wij doen vanwege een paar simpele redenen:
Als u nog geen Anaheim DPJ72LC4 heb gekocht dan nu is een goed moment om kennis te maken met de basisgegevens van het product. Eerst kijk dan naar de eerste pagina\'s van de handleiding, die je hierboven vindt. Je moet daar de belangrijkste technische gegevens Anaheim DPJ72LC4 vinden. Op dit manier kan je controleren of het apparaat aan jouw behoeften voldoet. Op de volgende pagina's van de handleiding Anaheim DPJ72LC4 leer je over alle kenmerken van het product en krijg je informatie over de werking. De informatie die je over Anaheim DPJ72LC4 krijgt, zal je zeker helpen om een besluit over de aankoop te nemen.
In een situatie waarin je al een beziter van Anaheim DPJ72LC4 bent, maar toch heb je de instructies niet gelezen, moet je het doen voor de hierboven beschreven redenen. Je zult dan weten of je goed de alle beschikbare functies heb gebruikt, en of je fouten heb gemaakt die het leven van de Anaheim DPJ72LC4 kunnen verkorten.
Maar de belangrijkste taak van de handleiding is om de gebruiker bij het oplossen van problemen te helpen met Anaheim DPJ72LC4 . Bijna altijd, zal je daar het vinden Troubleshooting met de meest voorkomende storingen en defecten #MANUAl# samen met de instructies over hun opplosinge. Zelfs als je zelf niet kan om het probleem op te lossen, zal de instructie je de weg wijzen naar verdere andere procedure, bijv. door contact met de klantenservice of het dichtstbijzijnde servicecentrum.