Gebruiksaanwijzing /service van het product TMS320C64X van de fabrikant Texas Instruments
Ga naar pagina of 169
TMS320C64x+ DSP Little-Endian DSP Library Programmer ’ s Reference Literature Number: SPRUEB8 February 2006.
IMPORT ANT NOTICE T exas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
i Read This First Preface Read This First About This Manual This document describes the C64x+ digital signal processor little-endian (DSP) Library , or DSPLIB for short. Notational Conventions This document uses the following conventions: - Hexadecimal numbers are shown with the suffix h.
T rademarks ii SPRAA84 — TMS320C64x to TMS320C64+ CPU Migration Guide. Describes migrating from the T exas Instruments TMS320C64x digital signal processor (DSP) to the TMS320C64x+ DSP . The objective of this document is t o indicate dif ferences between the two cores.
Contents iii Contents 1 Introduction 1-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Contents iv A Performance/Fractional Q Formats A-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Describes performance considerations related to the C64x+ DSPLIB and provides information about the Q format used by DSPLIB functions.
T ables v Contents T ables 2−1 DSPLIB Data T ypes 2-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−1 Argument Conventions 3-2 . . . . . . . . . . . . . . . . . . . . . . . .
vi.
1-1 Introduction This chapter provides a brief introduction to the TI C64x+ DSP Libraries (DSPLIB), shows the organization of the routines contained in the library , and lists the features and benefits of the DSPLIB. T opic Page 1.1 Introduction to the TI C64x+ DSPLIB 1-2 .
Introduction to the TI C64x+ DSPLIB 1-2 1.1 Introduction to the TI C64x+ DSPLIB The TI C64x+ DSPLIB is an optimized DSP Function Library for C programmers using devices that include the C64x+ megamodule. It includes many C-callable, assembly-optimized, general-purpose signal-processing routines.
Introduction to the TI C64x+ DSPLIB 1-3 Introduction - Filtering and convolution J DSP_fir_cplx J DSP_fir_cplx_hM4X4 J DSP_fir_gen J DSP_fir_gen_hM17_rA8X8 J DSP_fir_r4 J DSP_fir_r8 J DSP_fir_r8_hM16_.
Features and Benefits 1-4 1.2 Features and Benefits - Hand-coded assembly-optimized routines - C and linear assembly source code - C-callable routines, fully compatible with the TI C6x compiler - Fractional Q.
2-1 Installing and Using DSPLIB This chapter provides information on how to install and rebuild the TI C64x+ DSPLIB. T opic Page 2.1 How to Install DSPLIB 2-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Using DSPLIB 2-3 .
How to Install DSPLIB 2-2 2.1 How to Install DSPLIB Note: Y ou should read the README.txt file for specific details of the release. Th e DSPLIB is provided in the file dsp64plus.zip. The file must be unzipped to provide the following directory structure: dsp | +−−README.
Using DSPLIB 2-3 Installing and Using DSPLIB 2.2 Using DSPLIB 2.2.1 DSPLIB Arguments and Data T ypes 2.2.1.1 DSPLIB T ypes T able 2−1 shows the data types handled by the DSPLIB.
Using DSPLIB 2-4 2.2.2 Calling a DSPLIB Function From C In addition to correctly installing the DSPLIB software, follow these steps to include a DSPLIB function in the code: - Include the function header file corresponding to the DSPLIB function - Link the code with dsp64plus.
How to Rebuild DSPLIB 2-5 Installing and Using DSPLIB 2.2.6 Interrupt Behavior of DSPLIB Functions All of the functions in this library are designed to be used in systems with interrupts. Thus, it is not necessary to disable interrupts when calling any of these functions.
2-6.
3-1 DSPLIB Function T ables This chapter provides tables containing all DSPLIB functions, a brief description of each, and a page reference for more detailed information. T opic Page 3.1 Arguments and Conventions Used 3-2 . . . . . . . . . . . . . . .
Arguments and Conventions Used 3-2 3.1 Arguments and Conventions Used The following convention has been used when describing the arguments for each individual function: T able 3−1.
DSPLIB Functions 3-3 DSPLIB Function T ables 3.2 DSPLIB Functions The routines included in the DSP library are organized into eight functional categories and listed below in alphabetical order .
DSPLIB Function T ables 3-4 3.3 DSPLIB Function T ables T able 3−2. Adaptive Filtering Functions Description Page long DSP_firlms2(short *h, short *x, short b, int nh) LMS FIR 4-2 T able 3−3.
DSPLIB Function T ables 3-5 DSPLIB Function T ables T able 3−4. FFT (Continued) Functions Page Description void DSP_ifft16x16(short *w , int nx, short *x, short *y) Complex out of place, Inverse FFT mixed radix with digit reversal. Input/Output data in Re/Im order .
DSPLIB Function T ables 3-6 T able 3−5. Filtering and Convolution (Continued) Functions Page Description void DSP_iir(short *r1, short *x, short *r2, short *h2, short *h1, int nr) IIR with 5 Coefficients 4-54 void DSP_iirlat(short *x, int nx, short *k, int nk, int *b, short *r) All−pole IIR Lattice Filter 4-56 T able 3−6.
DSPLIB Function T ables 3-7 DSPLIB Function T ables T able 3−8. Miscellaneous Functions Description Page short DSP_bexp(int *x, short nx) Max Exponent of a V ector (for scaling) 4-76 void DSP_blk_es.
Differences Between the C64x and C64x+ DSPLIBs 3-8 3.4 Differences Between the C64x and C64x+ DSPLIBs Th e C64x+ DSPLIB was developed by optimizing some of the functions of the C64x DSPLIB to take advantage of the C64x+ architecture. T able 3−10 shows the optimized functions for the C64x+ DSPLIB.
Differences Between the C64x and C64x+ DSPLIBs 3-9 DSPLIB Function T ables T able 3−10. Functions Optimized in the C64x+ DSPLIB (Continued) Function Optimization T ype C64x+ Optimized DSP_fir_cplx_hM4X4 Ye s Kernel re−design, SPLOOP Optimization resulted in new requirements.
Differences Between the C64x and C64x+ DSPLIBs 3-10 T able 3−10. Functions Optimized in the C64x+ DSPLIB (Continued) Function Optimization T ype C64x+ Optimized DSP_blk_eswap16 No DSP_blk_eswap32 No.
4-1 DSPLIB Reference This chapter provides a list of the functions within the DSP library (DSPLIB) organized into functional categories. The functions within each category are listed in alphabetical order and include arguments, descriptions, algorithms, benchmarks, and special requirements.
DSP_firlms2 4-2 4.1 Adaptive Filtering LMS FIR DSP_firlms2 Function long DSP_firlms2(short * restrict h, const short * restrict x, short b, int nh) Arguments h[nh] Coefficient Array x[nh+1] Input Array b Error from previous FIR nh Number of coefficients.
DSP_firlms2 4-3 C64x+ DSPLIB Reference Implementation Notes - Bank Conflicts: No bank conflicts occur . - Interruptibility: The code is interrupt-tolerant but not interruptible.
DSP_autocor 4-4 4.2 Correlation AutoCorrelation DSP_autocor Function void DSP_autocor(short * restrict r , const short * restrict x, int nx, int nr) Arguments r[nr] Output array x[nx+nr] Input array . Must be double-word aligned. nx Length of autocorrelation.
DSP_autocor 4-5 C64x+ DSPLIB Reference Implementation Notes - Bank Conflicts: No bank conflicts occur . - Interruptibility: The code is interrupt-tolerant but not interruptible. - The inner loop is unrolled 8 times. - The outer loop is unrolled 4 times.
DSP_autocor_rA8 4-6 AutoCorrelation DSP_autocor_rA8 Function void DSP_autocor_rA8(short * restrict r , const short * restrict x, int nx, int nr) Arguments r[nr] Output array , Must be double word aligned. x[nx+nr] Input array . Must be double-word aligned.
DSP_autocor_rA8 4-7 C64x+ DSPLIB Reference Benchmarks Cycles nx<40: 6*nr+ 20 nx>=40: nx*nr/8 + 2*nr + 20 Codesize 304 bytes.
DSP_fft16x16 4-8 4.3 FFT Complex Forward Mixed Radix 16 x 16-bit FFT DSP_fft16x16 Function void DSP_f ft16x16(const short * restrict w , int nx, short * restrict x, short * restrict y) Arguments w[2*nx] Pointer to complex Q.15 FFT coefficients. nx Length of FFT in complex samples.
DSP_fft16x16 4-9 C64x+ DSPLIB Reference Implementation Notes - Bank Conflicts: No bank conflicts occur . - Interruptibility: The code is interruptible. The routine uses log 4 (nx) − 1 stages of radix-4 transform and performs either a radix-2 or radix-4 transform on the last stage depending on nx.
DSP_fft16x16 4-10 T o vectorize the FFT , it is desirable to access the twiddle factor array using double word wide loads and fetch the twiddle factors needed. T o do this, a modified twiddle factor array is created, in which the factors WN/4, WN/2, W3N/4 are arranged to be contiguous.
DSP_fft16x16_imre 4-1 1 C64x+ DSPLIB Reference Complex Forward Mixed Radix 16 x 16-bit FFT , With Im/Re Order DSP_fft16x16_imre Function void DSP_f ft16x16_imre(const short * restrict w , int nx, short * restrict x, short * restrict y) Arguments w[2*nx] Pointer to complex Q.
DSP_fft16x16_imre 4-12 The routine uses log 4 (nx) − 1 stages of radix-4 transform and performs either a radix-2 or radix-4 transform on the last stage depending on nx. If nx is a power of 4, then this last stage is also a radix-4 transform, otherwise it is a radix-2 transform.
DSP_fft16x16_imre 4-13 C64x+ DSPLIB Reference T o vectorize the FFT , it is desirable to access twiddle factor array using double word wide loads and fetch the twiddle factors needed. T o do this, a modified twiddle factor array is created, in which the factors WN/4, WN/2, W3N/4 are arranged to be contiguous.
DSP_fft16x16r 4-14 Complex Forward Mixed Radix 16 x 16-bit FFT With Rounding DSP_fft16x16r Function void DSP_fft16x16r(int nx, short * restrict x, const short * restrict w , const un- signed char * restrict brev , short * restrict y , int radix, int offset, int nmax) Arguments nx Length of FFT in complex samples.
DSP_fft16x16r 4-15 C64x+ DSPLIB Reference void dft(int n, short x[], short y[]) { int k,i, index; const double PI = 3.14159654; short * p_x; double arg, fx_0, fx_1, fy_0, fy_1, co, si; for(k = 0; k<.
DSP_fft16x16r 4-16 The function takes the twiddle factors and input data, and calculates the FFT producing the frequency domain data in the y[ ] array . As the FFT allows every input point to affect every output point, which causes cache thrashing in a cache based system.
DSP_fft16x16r 4-17 C64x+ DSPLIB Reference DSP_fft16x16r(N, &x[0], &w[0], brev,y,N/4,0, N) DSP_fft16x16r(N/4,&x[0], &w[2*3*N/4],brev,y,rad,0, N) DSP_fft16x16r(N/4,&x[2*N/4], &w[.
DSP_fft16x16r 4-18 { int i, l0, l1, l2, h2, predj; int l1p1,l2p1,h2p1, tw_offset, stride, fft_jmp; short xt0, yt0, xt1, yt1, xt2, yt2; short si1,si2,si3,co1,co2,co3; short xh0,xh1,xh20,xh21,xl0,xl1,xl.
DSP_fft16x16r 4-19 C64x+ DSPLIB Reference x_1 = x[1]; x_h2 = x[h2]; x_h2p1 = x[h2+1]; x_l1 = x[l1]; x_l1p1 = x[l1+1]; x_l2 = x[l2]; x_l2p1 = x[l2+1]; xh0 = x_0 + x_l1; xh1 = x_1 + x_l1p1; xl0 = x_0 .
DSP_fft16x16r 4-20 ptr_x2[h2p1] = (yt0 * co2 − xt0 * si2 + 0x00008000) >> 16; ptr_x2[l2 ] = (xt2 * co3 + yt2 * si3 + 0x00008000) >> 16; ptr_x2[l2p1] = (yt2 * co3 − xt2 * si3 + 0x000080.
DSP_fft16x16r 4-21 C64x+ DSPLIB Reference k = (k0 << 6) | k1; if (l0 < 0) k = k << −l0; else k = k >> l0; j++; /* multiple of 4 index */ x0 = ptr_x0[0]; x1 = ptr_x0[1]; x2 = ptr.
DSP_fft16x16r 4-22 xl1_1 = x6; xl0_1 = x7; } yt2 = xl0_0 + xl1_1; yt3 = xl1_0 − xl0_1; yt6 = xl0_0 − xl1_1; yt7 = xl1_0 + xl0_1; if (radix == 2) { yt7 = xl1_0 − xl0_1; yt3 = xl1_0 + xl0_1; } y0[.
DSP_fft16x16r 4-23 C64x+ DSPLIB Reference Implementation Notes - Bank Conflicts: No bank conflicts occur . - Interruptibility: The code is interruptible. - The routine uses log 4 (nx) − 1 stages of radix-4 transform and performs either a radix-2 or radix-4 transform on the last stage depending on nx.
DSP_fft16x32 4-24 Complex Forward Mixed Radix 16 x 32-bit FFT With Rounding DSP_fft16x32 Function void DSP_f ft16x32(const short * restrict w , int nx, int * restrict x, int * restrict y) Arguments w[2*nx] Pointer to complex Q.15 FFT coefficients. nx Length of FFT in complex samples.
DSP_fft16x32 4-25 C64x+ DSPLIB Reference Implementation Notes - Bank Conflicts: No bank conflicts occur . - Interruptibility: The code is interruptible. - The routine uses log 4 (nx) − 1 stages of radix-4 transform and performs either a radix-2 or radix-4 transform on the last stage depending on nx.
DSP_fft32x32 4-26 Complex Forward Mixed Radix 32 x 32-bit FFT With Rounding DSP_fft32x32 Function void DSP_fft32x32(const int * restrict w , int nx, int * restrict x, int * restrict y) Arguments w[2*nx] Pointer to complex 32-bit FFT coefficients. nx Length of FFT in complex samples.
DSP_fft32x32 4-27 C64x+ DSPLIB Reference Implementation Notes - Bank Conflicts: No bank conflicts occur . - Interruptibility: The code is interruptible. - The routine uses log 4 (nx) − 1 stages of radix-4 transform and performs either a radix-2 or radix-4 transform on the last stage depending on nx.
DSP_fft32x32s 4-28 Complex Forward Mixed Radix 32 x 32-bit FFT With Scaling DSP_fft32x32s Function void DSP_fft32x32s(const int * restrict w , int nx, int * restrict x, int * restrict y) Arguments w[2*nx] Pointer to complex 32-bit FFT coefficients. nx Length of FFT in complex samples.
DSP_fft32x32s 4-29 C64x+ DSPLIB Reference - The FFT coefficients (twiddle factors) are generated using the program tw_fft32x32 provided in the directory ‘supportfft’. The scale factor must be 1073741823.5. The input data must be scaled by 2 (log2(nx) − ceil[ log4(nx)− 1 ]) to completely prevent overflow .
DSP_ifft16x16 4-30 Complex Inverse Mixed Radix 16 x 16-bit FFT With Rounding DSP_ifft16x16 Function void DSP_if ft16x16(const short * restrict w , int nx, short * restrict x, short * restrict y) Arguments w[2*nx] Pointer to complex Q.15 FFT coefficients.
DSP_ifft16x16 4-31 C64x+ DSPLIB Reference Implementation Notes - Bank Conflicts: No bank conflicts occur . - Interruptibility: The code is interruptible. - The routine uses log 4 (nx) − 1 stages of radix-4 transform and performs either a radix-2 or radix-4 transform on the last stage depending on nx.
DSP_ifft16x16_imre 4-32 Complex Inverse Mixed Radix 16 x 16-bit FFT With Im/Re Order DSP_ifft16x16_imre Function void DSP_if ft16x16_imre(const short * restrict w , int nx, short * restrict x, short * restrict y) Arguments w[2*nx] Pointer to complex Q.
DSP_ifft16x16_imre 4-33 C64x+ DSPLIB Reference Implementation Notes - Bank Conflicts: No bank conflicts occur . - Interruptibility: The code is interruptible. - The routine uses log 4 (nx) − 1 stages of radix-4 transform and performs either a radix-2 or radix-4 transform on the last stage depending on nx.
DSP_ifft16x32 4-34 Complex Inverse Mixed Radix 16 x 32-bit FFT With Rounding DSP_ifft16x32 Function void DSP_ifft16x32(const short * restrict w , int nx, int * restrict x, int * restrict y) Arguments w[2*nx] Pointer to complex Q.15 FFT coefficients. nx Length of FFT in complex samples.
DSP_ifft16x32 4-35 C64x+ DSPLIB Reference - The FFT coefficients (twiddle factors) are generated using the program tw_fft16x32 provided in the directory ‘supportfft’. The scale factor must be 32767.5. No scaling is done with the function; thus the input data must be scaled by 2 log2(nx) to completely prevent overflow .
DSP_ifft32x32 4-36 Complex Inverse Mixed Radix 32 x 32-bit FFT With Rounding DSP_ifft32x32 Function void DSP_ifft32x32(const int * restrict w , int nx, int * restrict x, int * restrict y) Arguments w[2*nx] Pointer to complex 32-bit FFT coefficients. nx Length of FFT in complex samples.
DSP_ifft32x32 4-37 C64x+ DSPLIB Reference - The FFT coefficients (twiddle factors) are generated using the program tw_fft32x32 provided in the directory ‘supportfft’. The scale factor must be 2147483647.5. No scaling is done with the function; thus the input data must be scaled by 2 log2(nx) to completely prevent overflow .
DSP_fir_cplx 4-38 4.4 Filtering and Convolution Complex FIR Filter DSP_fir_cplx Function void DSP_fir_cplx (const short * restrict x, const short * restrict h, short * restrict r , int nh, int nr) Arguments x[2*(nr+nh−1)] Complex input data. x must point to x[2*(nh−1)].
DSP_fir_cplx 4-39 C64x+ DSPLIB Reference Special Requirements - The number of coefficients nh must be a multiple of 2. - The number of output samples nr must be a multiple of 4. Implementation Notes - Bank Conflicts: No bank conflicts occur . - Interruptibility: The code is interrupt-tolerant but not interruptible.
DSP_fir_cplx_hM4X4 4-40 Complex FIR Filter DSP_fir_cplx_hM4X4 Function void DSP_fir_cplx _hM4X4(const short * restrict x, const sh ort * restrict h, short * restrict r , int nh, int nr) Arguments x[2*(nr+nh−1)] Complex input data. x must point to x[2*(nh−1)].
DSP_fir_cplx_hM4X4 4-41 C64x+ DSPLIB Reference Special Requirements - The number of coefficients nh must be larger or equal to 4 and a multiple of 4. - The number of output samples nr must be a multiple of 4. Implementation Notes - Bank Conflicts: No bank conflicts occur .
DSP_fir_gen 4-42 FIR Filter DSP_fir_gen Function void DSP_fir_gen (const short * restrict x, const short * restrict h, short * restrict r , int nh, int nr) Arguments x[nr+nh−1] Pointer to input array of size nr + nh − 1. h[nh] Pointer to coefficient array of size nh (coef ficients must be in reverse order).
DSP_fir_gen 4-43 C64x+ DSPLIB Reference Special Requirements - The number of coefficients, nh, must be greater than or equal to 5. Coefficients must be in reverse order . - The number of outputs computed, nr , must be a multiple of 4 and greater than or equal to 4.
DSP_fir_gen_hM17_rA8X8 4-44 FIR Filter DSP_fir_gen_hM17_rA8X8 Function void DSP_fir_gen_hM17_rA8X8 (const short * restrict x, const short * restrict h, short * restrict r , int nh, int nr) Arguments x[nr+nh−1] Pointer to input array of size nr + nh − 1.
DSP_fir_gen_hM17_rA8X8 4-45 C64x+ DSPLIB Reference Special Requirements - The number of coefficients, nh, must be greater than or equal to 17. Coefficients must be in reverse order . - The number of outputs computed, nr , must be a multiple of 8 and greater than or equal to 8.
DSP_fir_r4 4-46 FIR Filter (when the number of coefficients is a multiple of 4) DSP_fir_r4 Function void DSP_fir_r4 (const short * restrict x, co nst short * restrict h, short * restrict r , int nh, int nr) Arguments x[nr+nh−1] Pointer to input array of size nr + nh – 1.
DSP_fir_r4 4-47 C64x+ DSPLIB Reference Special Requirements - The number of coefficients, nh, must be a multiple of 4 and greater than or equal to 8. Coefficients must be in reverse order . - The number of outputs computed, nr , must be a multiple of 4 and greater than or equal to 4.
DSP_fir_r8 4-48 FIR Filter (when the number of coefficients is a multiple of 8) DSP_fir_r8 Function void DSP_fir_r8_hM16_rM8A8X8 (short *x, short *h, short *r , int nh, int nr) Arguments x[nr+nh−1] Pointer to input array of size nr + nh – 1. h[nh] Pointer to coefficient array of size nh (coef ficients must be in reverse order).
DSP_fir_r8 4-49 C64x+ DSPLIB Reference Implementation Notes - Bank Conflicts: No bank conflicts occur . - Interruptibility: The code is interruptible. - The load double-word instruction is used to simultaneously load four values in a single clock cycle.
DSP_fir_r8_hM16_rM8A8X8 4-50 FIR Filter (the number of coefficients is a multiple of 8) DSP_fir_r8_hM16_rM8A8X8 Function void DSP_fir_r8_hM16_rM8A8X8 (short *x, short *h, short *r , int nh, int nr) Arguments x[nr+nh−1] Pointer to input array of size nr + nh – 1.
DSP_fir_r8_hM16_rM8A8X8 4-51 C64x+ DSPLIB Reference Special Requirements - The number of coefficients, nh, must be a multiple of 8 and greater than or equal to 16. Coefficients must be in reverse order . - The number of outputs computed, nr , must be a multiple of 8 and greater than or equal to 8.
DSP_fir_sym 4-52 Symmetric FIR Filter DSP_fir_sym Function void DSP_fir_sym (const short * restrict x, const short * restrict h, short * re- strict r , int nh, int nr , int s) Arguments x[nr+2*nh] Pointer to input array of size nr + 2*nh. Must be double-word aligned.
DSP_fir_sym 4-53 C64x+ DSPLIB Reference y0 += (short) (x[j + i] + x[j + 2 * nh − i]) * h[i]; y0 += x[j + nh] * h[nh]; r[j] = (int) (y0 >> s); } } Special Requirements - nh must be a multiple of 8. The number of original symmetric coef ficients is 2*nh+1.
DSP_iir 4-54 IIR With 5 Coefficients DSP_iir Function void DSP_iir (short * restrict r1, const short * restrict x, short * restrict r2, const short * restrict h2, const short * restrict h1, int nr) Arguments r1[nr+4] Output array (used in actual computation.
DSP_iir 4-55 C64x+ DSPLIB Reference Special Requirements - nr is greater than or equal to 8. - Input data array x[ ] contains nr + 4 input samples to produce nr output samples. Implementation Notes - Bank Conflicts: No bank conflicts occur . - Interruptibility: The code is interrupt-tolerant but not interruptible.
DSP_iirlat 4-56 All-Pole IIR Lattice Filter DSP_iirlat Function void DSP_iirlat(const short * restrict x, int nx, const short * restrict k, int nk, int * restrict b, short * restrict r) Arguments x[nx] Input vector (16-bit). nx Length of input vector .
DSP_iirlat 4-57 C64x+ DSPLIB Reference rt = rt − (short)(b[i] >> 15) * k[i]; b[i + 1] = b[i] + (short)(rt >> 15) * k[i]; } b[0] = rt; r[j] = rt >> 15; } } Special Requirements - nk must be >= 4.
DSP_dotp_sqr 4-58 4.5 Math V ector Dot Product and Square DSP_dotp_sqr Function int DSP_dotp_sqr(int G, const short * restrict x, const short * restrict y , int * restrict r , int nx) Arguments G Calculated value of G (used in the VSELP coder). x[nx] First vector array y[nx] Second vector array r Result of vector dot product of x and y .
DSP_dotp_sqr 4-59 C64x+ DSPLIB Reference Special Requirements nx must be a multiple of 4 and greater than or equal to 12. Implementation Notes - Bank Conflicts: No bank conflicts occur . - Interruptibility: The code is interrupt-tolerant but not interruptible.
DSP_dotprod 4-60 V ector Dot Product DSP_dotprod Function int DSP_dotprod(const short * restrict x, const short * restrict y , int nx) Arguments x[nx] First vector array . Must be double-word aligned. y[nx] Second vector array . Must be double word-aligned.
DSP_dotprod 4-61 C64x+ DSPLIB Reference Implementation Notes - Bank Conflicts: No bank conflicts occur if the input arrays x[ ] and y[ ] are offset by 4 half-words (8 bytes). - Interruptibility: The code is fully interruptible. - The code is unrolled 4 times to enable full memory and multiplier bandwidth to be utilized.
DSP_maxval 4-62 Maximum V alue of V ector DSP_maxval Function short DSP_maxval (const short *x, int nx) Arguments x[nx] Pointer to input vector of size nx. nx Length of input data vector . Must be multiple of 8 and ≥ 32. return short Maximum value of a vector .
DSP_maxidx 4-63 C64x+ DSPLIB Reference Index of Maximum Element of V ector DSP_maxidx Function int DSP_maxidx (const short *x, int nx) Arguments x[nx] Pointer to input vector of size nx. Must be double-word aligned. nx Length of input data vector . Must be multiple of 16 and ≥ 48.
DSP_maxidx 4-64 Implementation Notes - Bank Conflicts: No bank conflicts occur . - Interruptibility: The code is interrupt-tolerant but not interruptible. - The code is unrolled 16 times to enable the full bandwidth of LDDW and MAX2 instructions to be utilized.
DSP_minval 4-65 C64x+ DSPLIB Reference Minimum V alue of V ector DSP_minval Function short DSP_minval (const short *x, int nx) Arguments x [nx] Pointer to input vector of size nx. nx Length of input data vector . Must be multiple of 4 and ≥ 20. return short Maximum value of a vector .
DSP_mul32 4-66 32-Bit V ector Multiply DSP_mul32 Function void DSP_mul32(const int * restrict x, const int * restrict y , int * restrict r , short nx) Arguments x[nx] Pointer to input data vector 1 of size nx. Must be double-word aligned. y[nx] Pointer to input data vector 2 of size nx.
DSP_mul32 4-67 C64x+ DSPLIB Reference e+=d; /* Xhigh*Yhigh + */ /* (Xhigh*Ylow+Xlow*Yhigh)>>16 */ *(r++)=e; } } Special Requirements - nx must be a multiple of 8 and greater than or equal to 16. - Input and output vectors must be double-word aligned.
DSP_neg32 4-68 32-Bit V ector Negate DSP_neg32 Function void DSP_neg32(int *x, int *r , short nx) Arguments x[nx] Pointer to input data vector 1 of size nx with 32-bit elements. Must be double-word aligned. r[nx] Pointer to output data vector of size nx with 32-bit elements.
DSP_recip16 4-69 C64x+ DSPLIB Reference 16-Bit Reciprocal DSP_recip16 Function void DSP_recip16 (short *x, short *rfrac, short *rexp, short nx) Arguments x[nx] Pointer to Q.15 input data vector of size nx. rfrac[nx] Pointer to Q.15 output data vector for fractional values.
DSP_recip16 4-70 *(rexp++)=normal−15; /* store exponent */ b=0x80000000; /* dividend = 1 */ for(j=15;j>0;j−−) b=_subc(b,a); /* divide */ b=b&0x7FFF; /* clear remainder /* (clear upper hal.
DSP_vecsumsq 4-71 C64x+ DSPLIB Reference Sum of Squares DSP_vecsumsq Function int DSP_vecsumsq (const short *x, int nx) Arguments x[nx] Input vector nx Number of elements in x. Must be multiple of 4 and ≥ 8. return int Sum of the squares Description This routine returns the sum of squares of the elements contained in the vector x[ ].
DSP_w_vec 4-72 Weighted V ector Sum DSP_w_vec Function void DSP_w_vec(const short * restrict x, const short * restrict y , short m, short * restrict r , short nr) Arguments x[nr] V ector being weighted. Must be double-word aligned. y[nr] Summation vector .
DSP_mat_mul 4-73 C64x+ DSPLIB Reference 4.6 Matrix Matrix Multiplication DSP_mat_mul Function void DSP_mat_mul(const short * restrict x, int r1, int c1, const short * restrict y , int c2, short * restrict r , int qs) Arguments x [r1*c1] Pointer to input matrix of size r1*c1.
DSP_mat_mul 4-74 for (i = 0; i < r1; i++) for (j = 0; j < c2; j++) { sum = 0; for (k = 0; k < c1; k++) sum += x[k + i*c1] * y[j + k*c2]; r[j + i*c2] = sum >> qs; } } Special Requirements - The arrays x[], y[], and r[] are stored in distinct arrays.
DSP_mat_trans 4-75 C64x+ DSPLIB Reference Matrix T ranspose DSP_mat_trans Function void DSP_mat_trans (const short *x, short rows, short columns, short *r) Arguments x[rows*columns] Pointer to input matrix. rows Number of rows in the input matrix. Must be a multiple of 4.
DSP_bexp 4-76 4.7 Miscellaneous Block Exponent Implementation DSP_bexp Function short DSP_bexp(const int *x, short nx) Arguments x[nx] Pointer to input vector of size nx. Must be double-word aligned. nx Number of elements in input vector . Must be multiple of 8.
DSP_bexp 4-77 C64x+ DSPLIB Reference Implementation Notes - Bank Conflicts: No bank conflicts occur . - Interruptibility: The code is interrupt-tolerant but not interruptible.
DSP_blk_eswap16 4-78 Endian-Swap a Block of 16-Bit V alues DSP_blk_eswap16 Function void blk_eswap16(void * restrict x, void * restrict r , int nx) Arguments x [nx] Source data. Must be double-word aligned. r [nx] Destination array . Must be double-word aligned.
DSP_blk_eswap16 4-79 C64x+ DSPLIB Reference Special Requirements - Input and output arrays do not overlap, except when “r == NULL” so that the operation occurs in-place. - The input array and output array are expected to be double-word aligned, and a multiple of 8 half-words must be processed.
DSP_blk_eswap32 4-80 Endian-Swap a Block of 32-Bit V alues DSP_blk_eswap32 Function void blk_eswap32(void * restrict x, void * restrict r , int nx) Arguments x [nx] Source data. Must be double-word aligned. r [nx] Destination array . Must be double-word aligned.
DSP_blk_eswap32 4-81 C64x+ DSPLIB Reference t2 = _x[i*4 + 1]; t3 = _x[i*4 + 0]; _r[i*4 + 0] = t0; _r[i*4 + 1] = t1; _r[i*4 + 2] = t2; _r[i*4 + 3] = t3; } } Special Requirements - Input and output arrays do not overlap, except where “r == NULL” so that the operation occurs in-place.
DSP_blk_eswap64 4-82 Endian-Swap a Block of 64-Bit V alues DSP_blk_eswap64 Function void blk_eswap64(void * restrict x, void * restrict r , int nx) Arguments x[nx] Source data. Must be double-word aligned. r[nx] Destination array . Must be double-word aligned.
DSP_blk_eswap64 4-83 C64x+ DSPLIB Reference t2 = _x[i*8 + 5]; t3 = _x[i*8 + 4]; t4 = _x[i*8 + 3]; t5 = _x[i*8 + 2]; t6 = _x[i*8 + 1]; t7 = _x[i*8 + 0]; _r[i*8 + 0] = t0; _r[i*8 + 1] = t1; _r[i*8 + 2] .
DSP_blk_move 4-84 Block Move (Overlapping) DSP_blk_move Function void DSP_blk_move(short * x, short * r , int nx) Arguments x [nx] Block of data to be moved. r [nx] Destination of block of data. nx Number of elements in block. Must be multiple of 8 and ≥ 32.
DSP_fltoq15 4-85 C64x+ DSPLIB Reference Float to Q15 Conversion DSP_fltoq15 Function void DSP_fltoq15 (float *x, short *r , short nx) Arguments x[nx] Pointer to floating-point input vector of size nx. x should contain the numbers normalized between [−1,1).
DSP_fltoq15 4-86 Implementation Notes - Loop is unrolled twice. - Bank Conflicts: No bank conflicts occur . - Interruptibility: The code is interrupt-tolerant but not interruptible.
DSP_minerror 4-87 C64x+ DSPLIB Reference Minimum Energy Error Search DSP_minerror Function int minerror (const short * restrict GSP0_T ABLE, const short * restrict errCoefs, int * restrict max_index) Arguments GSP0_T ABLE[9*256] GSP0 terms array . Must be double-word aligned.
DSP_minerror 4-88 Special Requirements Array GSP0_T ABLE[] must be double-word aligned. Implementation Notes - Bank Conflicts: No bank conflicts occur . - Interruptibility: The code is interrupt-tolerant but not interruptible. - The load double-word instruction is used to simultaneously load four values in a single clock cycle.
DSP_q15tofl 4-89 C64x+ DSPLIB Reference Q15 to Float Conversion DSP_q15tofl Function void DSP_q15tofl (short *x, float *r , int nx) Arguments x[nx] Pointer to Q.15 input vector of size nx. r[nx] Pointer to floating-point output data vector of size nx containing the floating-point equivalent of vector x.
DSP_bitrev_cplx 4-90 4.8 Obsolete Functions 4.8.1 FFT Complex Bit-Reverse DSP_bitrev_cplx NOTE: This function is provided for backward compatibility with the C62x DSPLIB. It has not been optimized for the C64x architecture. Y ou are advised to use one of the newly added FFT functions which have been optimized for the C64x.
DSP_bitrev_cplx 4-91 C64x+ DSPLIB Reference int nbits, nbot, ntop, ndiff, n2, halfn; short *xs = (short *) x; nbits = 0; i = nx; while (i > 1){ i = i >> 1; nbits++;} nbot = nbits >> 1; .
DSP_bitrev_cplx 4-92 if (t){x[i3] = xj3; x[j3] = xi3;} } } Special Requirements - nx must be a power of 2. - The array index[] is generated by the routine bitrev_index provided in the directory ‘supportfft’. - If nx ≤ 4K, you can use the char (8-bit) data type for the “index” variable.
DSP_radix2 4-93 C64x+ DSPLIB Reference Complex Forward FFT (radix 2) DSP_radix2 NOTE: This function is provided for backward compatibility with the C62x DSPLIB. It has not been optimized for the C64x architecture. Y ou are advised to use one of the newly added FFT functions which have been optimized for the C64x.
DSP_radix2 4-94 xt = x[2*l] − x[2*i]; x[2*i] = x[2*i] + x[2*l]; yt = x[2*l+1] − x[2*i+1]; x[2*i+1] = x[2*i+1] + x[2*l+1]; x[2*l] = (c*xt + s*yt)>>15; x[2*l+1] = (c*yt − s*xt)>>15; } .
DSP_r4fft 4-95 C64x+ DSPLIB Reference Complex Forward FFT (radix 4) DSP_r4fft NOTE: This function is provided for backward compatibility with the C62x DSPLIB. It has not been optimized for the C64x architecture. Y ou are advised to use one of the newly added FFT functions which have been optimized for the C64x.
DSP_r4fft 4-96 si1 = w[ia1 * 2]; co2 = w[ia2 * 2 + 1]; si2 = w[ia2 * 2]; co3 = w[ia3 * 2 + 1]; si3 = w[ia3 * 2]; ia1 = ia1 + ie; for (i0 = j; i0 < nx; i0 += n1) { i1 = i0 + n2; i2 = i1 + n2; i3 = i.
DSP_r4fft 4-97 C64x+ DSPLIB Reference >>15; x[2 * i3 + 1] = (s2 * co3−r2 * si3)>>15; } } ie <<= 2; } } Special Requirements - 4 ≤ nx ≤ 65536 (nx a power of 4) - x is aligned on.
DSP_fft 4-98 Complex Forward FFT With Digital Reversal DSP_fft Function void DSP_fft (const short * restrict w , int nx, short * restrict x, short * restrict y) Arguments w[2*nx] Pointer to vector of Q.15 FFT coefficients of size 2 * nx elements. Must be double-word aligned.
DSP_fft 4-99 C64x+ DSPLIB Reference #include <stdio.h> #include <stdlib.h> #if 0 # define DIG_REV(i, m, j) ((j) = (_shfl(_rotl(_bitr(_deal(i)), 16)) >> (m))) #else # define DIG_REV(i.
DSP_fft 4-100 _nassert((int)x % 8 == 0); _nassert((int)y % 8 == 0); _nassert((int)w % 8 == 0); _nassert(n >= 16); _nassert(n < 32768); #endif /* −−−−−−−−−−−−−−−−.
DSP_fft 4-101 C64x+ DSPLIB Reference { #ifndef NOASSUME _nassert(i % 4 == 0); _nassert(s >= 4); #pragma MUST_ITERATE(2,,2); #endif for (j = 0; j < s; j += 2) { for (k = 0; k < 2; k++) { short.
DSP_fft 4-102 /* the stride between the elements as follows: */ /* x(n), x(n + s), x(n + 2*s), x(n + 3*s). */ /* */ /* These four inputs are used to calculate four outputs */ /* as shown below: */ /* .
DSP_fft 4-103 C64x+ DSPLIB Reference xl1 = x0i − x2i; xl20 = x1r − x3r; xl21 = x1i − x3i; xt0 = xh0 + xh20; yt0 = xh1 + xh21; xt1 = xl0 + xl21; yt1 = xl1 − xl20; xt2 = xh0 − xh20; yt2 = xh1 .
DSP_fft 4-104 /* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */ /* Offset to next subtable of twiddle factors.
DSP_fft 4-105 C64x+ DSPLIB Reference x0r = x[2*(i + 0) + 0]; x0i = x[2*(i + 0) + 1]; x1r = x[2*(i + 1) + 0]; x1i = x[2*(i + 1) + 1]; x2r = x[2*(i + 2) + 0]; x2i = x[2*(i + 2) + 1]; x3r = x[2*(i + 3) +.
DSP_fft 4-106 Special Requirements - In-place computation is not allowed. - nx must be a power of 4 and 4 ≤ nx ≤ 65536. - Input x[ ] and output y[ ] are stored on double-word aligned boundaries. - Input data x[ ] is stored in the order real0, img0, real1, img1, .
DSP_fft16x16t 4-107 C64x+ DSPLIB Reference Complex Forward Mixed Radix 16- x 16-Bit FFT With T runcation DSP_fft16x16t Function void DSP_f ft16x16t(const short * restrict w , int nx, short * restrict x, short * re- strict y) Arguments w[2*nx] Pointer to complex Q.
DSP_fft16x16t 4-108 # define DIG_REV(i, m, j) ((j) = (_shfl(_rotl(_bitr(_deal(i)), 16)) >> (m))) #else # define DIG_REV(i, m, j) do { unsigned _ = (i); _ = ((_ & 0x33333333) << 2) |.
DSP_fft16x16t 4-109 C64x+ DSPLIB Reference /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/ /* Determine the magnitude od the number of points to be transformed.
DSP_fft16x16t 4-1 10 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−.
DSP_fft16x16t 4-1 1 1 C64x+ DSPLIB Reference /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−.
DSP_fft16x16t 4-1 12 xl0_1 = x_2 − x_l1_2; xl1_1 = x_3 − x_l1_3; xh20_0 = x_h2_0 + x_l2_0; xh21_0 = x_h2_1 + x_l2_1; xh20_1 = x_h2_2 + x_l2_2; xh21_1 = x_h2_3 + x_l2_3; xl20_0 = x_h2_0 − x_l2_0;.
DSP_fft16x16t 4-1 13 C64x+ DSPLIB Reference /* y0i = x0i + x2i + x1i + x3i = xh1 + xh21 */ /* y1r = x0r − x2r + (x1i − x3i) = xl0 + xl21 */ /* y1i = x0i − x2i − (x1r − x3r) = xl1 − xl20 */.
DSP_fft16x16t 4-1 14 x2[h2+1] = (co10 * yt1_0 − si10 * xt1_0) >> 15; x2[h2+2] = (si11 * yt1_1 + co11 * xt1_1) >> 15; x2[h2+3] = (co11 * yt1_1 − si11 * xt1_1) >> 15; x2[l1 ] = (si.
DSP_fft16x16t 4-1 15 C64x+ DSPLIB Reference } else { y1 = y0 + (int) (npoints >> 1); y3 = y2 + (int) (npoints >> 1); l1 = norm + 2; j0 = 4; n0 = npoints >> 2; } /*−−−−−−.
DSP_fft16x16t 4-1 16 xl0_1 = x_2 − x_6; xl1_1 = x_3 − x_7; n00 = xh0_0 + xh0_1; n01 = xh1_0 + xh1_1; n10 = xl0_0 + xl1_1; n11 = xl1_0 − xl0_1; n20 = xh0_0 − xh0_1; n21 = xh1_0 − xh1_1; n30 =.
DSP_fft16x16t 4-1 17 C64x+ DSPLIB Reference if (radix == 2) { n02 = x_8 + x_a; n03 = x_9 + x_b; n22 = x_8 − x_a; n23 = x_9 − x_b; n12 = x_c + x_e; n13 = x_d + x_f; n32 = x_c − x_e; n33 = x_d −.
DSP_fft16x16t 4-1 18 Special Requirements - In-place computation is not allowed. - The size of the FFT , nx, must be power of 2 or 4, and 16 ≤ nx ≤ 32768. - The arrays for the complex input data x[ ], complex output data y[ ], and twiddle factors w[ ] must be double-word aligned.
DSP_fft16x16t 4-1 19 C64x+ DSPLIB Reference The following statements can be made based on above observations: 1) Inner loop “i0” iterates a variable number of times. In particular , the number of iterations quadruples every time from 1..N/4. Hence, software pipelining a loop that iterates a variable number of times is not profitable.
DSP_fft16x16t 4-120 There is one slight break in the flow of packed processing. The real part of the complex number is in the lower half, and the imaginary part is in the upper half. The flow breaks for “xl0” and “xl1” because in this case the real part needs to be combined with the imaginary part because of the multiplication by “j”.
A-1 Appendix A Performance/Fractional Q Formats This appendix describes performance considerations related to the C64x+ DSPLIB and provides information about the Q format used by DSPLIB functions. T opic Page A.1 Performance Considerations A-2 . . . .
Performance Considerations A-2 A.1 Performance Considerations The ceil( ) is used in some benchmark formulas to accurately describe the number of cycles. It returns a number rounded up, away from zero, to the nearest integer . For example, ceil(1.1) returns 2.
Fractional Q Formats A-3 Performance/Fractional Q Formats A.2 Fractional Q Formats Unless specifically noted, DSPLIB functions use Q15 format, or to be more exact, Q0.
Fractional Q Formats A-4 A.2.3 Q.31 Format Q.31 format spans two 16-bit memory words. The 16-bit word stored in the lower memory location contains the 16 least significant bits, and the higher memory location contains the most significant 15 bits and the sign bit.
B-1 Appendix A Software Updates and Customer Support This appendix provides information about software updates and customer support. T opic Page B.1 DSPLIB Software Updates B-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.
DSPLIB Software Updates B-2 B.1 DSPLIB Software Updates C64x DSPLIB software updates may be periodically released incorporating product enhancements and fixes as they become available. Y ou should read the README.TXT available in the root directory of every release.
C-1 Appendix A Glossary A address: The location of program code or data stored; an individually accessible memory location. A-law companding: See compress and expand (compand) .
Glossary C-2 board support library (BSL): The BSL is a set of application programming interfaces (APIs) consisting of target side DSP code used to configure and control board level peripherals. boot: The process of loading a program into program memory .
Glossary C-3 Glossary compress and expand (compand): A quantization scheme for audio signals in which the input signal is compressed and then, after processing, is reconstructed at the output by expansion. There are two distinct companding schemes: A-law (used in Europe) and μ -law (used in the United States).
Glossary C-4 DSP_blk_move: Block move. DSP_dotp_sqr: V ector dot product and square. DSP_dotprod: V ector dot product. DSP_fft: Complex forward FFT with digital reversal. DSP_fft16x16r: Complex forward mixed radix 16- x 16-bit FFT with rounding. DSP_fft16x16t: Complex forward mixed radix 16- x 16-bit FFT with truncation.
Glossary C-5 Glossary DSP_minval: Minimum value of a vector . DSP_mul32: 32-bit vector multiply . DSP_neg32: 32-bit vector negate. DSP_q15tofl: Q15 to float conversion. DSP_radix2: Complex forward FFT (radix 2). DSP_recip16: 16-bit reciprocal. DSP_r4fft: Complex forward FFT (radix 4).
Glossary C-6 H HAL: Hardware abstraction layer of the CSL. The HAL underlies the service layer and provides it a set of macros and constants for manipulating the peripheral registers at the lowest level.
Glossary C-7 Glossary interrupt service table (IST) A table containing a corresponding entry for each of the 16 physical interrupts. Each entry is a single-fetch packet and has a label associated with it. Internal peripherals: Devices connected to and controlled by a host device.
Glossary C-8 N nonmaskable interrupt (NMI): An interrupt that can be neither masked nor disabled. O object file: A file that has been assembled or linked and contains machine language object code. off chip: A state of being external to a device. on chip: A state of being internal to a device.
Glossary C-9 Glossary reset: A means of bringing the CPU to a known state by setting the registers and control bits to predetermined values and signaling execution to start at a specified address.
C-10.
Index-1 Index A adaptive filtering functions 3-4 DSPLIB reference 4-2 address, defined C-1 A-law companding, defined C-1 API, defined C-1 application programming interface, defined C-1 argument conven.
Index Index-2 DSP_dotprod defined C-4 DSPLIB reference 4-60 DSP_fft defined C-4 DSPLIB reference 4-98 DSP_fft16x16r defined C-4 DSPLIB reference 4-14 DSP_fft16x16t defined C-4 DSPLIB reference 4-8, 4-.
Index-3 DSP_w_vec defined C-5 DSPLIB reference 4-72 DSPLIB argument conventions, table 3-2 arguments 2-3 arguments and data types 2-3 calling a function from Assembly 2-4 calling a function from C 2-4.
Index Index-4 F fetch packet, defined C-5 FFT (fast Fourier transform) defined C-5 functions 3-4 FFT (fast Fourier transform) functions, DSPLIB reference 4-8 filtering and convolution functions 3-5 DS.
Index-5 Q Q.3.12 bit fields A-3 Q.3.12 format A-3 Q.3.15 bit fields A-3 Q.3.15 format A-3 Q.31 format A-4 Q.31 high-memory location bit fields A-4 Q.31 low-memory location bit fields A-4 R random-acce.
Een belangrijk punt na aankoop van elk apparaat Texas Instruments TMS320C64X (of zelfs voordat je het koopt) is om de handleiding te lezen. Dit moeten wij doen vanwege een paar simpele redenen:
Als u nog geen Texas Instruments TMS320C64X heb gekocht dan nu is een goed moment om kennis te maken met de basisgegevens van het product. Eerst kijk dan naar de eerste pagina\'s van de handleiding, die je hierboven vindt. Je moet daar de belangrijkste technische gegevens Texas Instruments TMS320C64X vinden. Op dit manier kan je controleren of het apparaat aan jouw behoeften voldoet. Op de volgende pagina's van de handleiding Texas Instruments TMS320C64X leer je over alle kenmerken van het product en krijg je informatie over de werking. De informatie die je over Texas Instruments TMS320C64X krijgt, zal je zeker helpen om een besluit over de aankoop te nemen.
In een situatie waarin je al een beziter van Texas Instruments TMS320C64X bent, maar toch heb je de instructies niet gelezen, moet je het doen voor de hierboven beschreven redenen. Je zult dan weten of je goed de alle beschikbare functies heb gebruikt, en of je fouten heb gemaakt die het leven van de Texas Instruments TMS320C64X kunnen verkorten.
Maar de belangrijkste taak van de handleiding is om de gebruiker bij het oplossen van problemen te helpen met Texas Instruments TMS320C64X . Bijna altijd, zal je daar het vinden Troubleshooting met de meest voorkomende storingen en defecten #MANUAl# samen met de instructies over hun opplosinge. Zelfs als je zelf niet kan om het probleem op te lossen, zal de instructie je de weg wijzen naar verdere andere procedure, bijv. door contact met de klantenservice of het dichtstbijzijnde servicecentrum.