Gebruiksaanwijzing /service van het product 5000 van de fabrikant Black Box
Ga naar pagina of 268
Order toll-free in the U.S. 24 hours, 7 A.M. Monday to midnight Friday: 877-877-BBOX FREE technical support, 24 hours a day, 7 days a week: Call 724-746-5500 or fax 724-746-0746 Mail order: Black Box Corporation , 1000 Park Drive, Lawrence, PA 15055-1018 Web site: www.
Multiser ver 5000 1 Multiser ver 5000 Multiser ver 5000 CommPak MS5 Expansion Module Sync/Async MS1 Expansion Module — Async only MS1 Expansion Module —12 Async — RJ-45 MS1 Expansion Module —12 Async — RJ-45 w/Line Drivers MS1 V .35 Conver ter/DCE MS1 X.
Multiser ver 5000 2 FEDERAL COMMUNICA TIONS COMMISSION RADIO FREQUENCY INTERFERENCE ST A TEMENT This equipment generates, uses, and can radiate radio frequency energy and if not installed an used properly , that is, in strict accordance with the manufacturer's instructions, may cause inter ference to radio communication.
T able of Contents 3 1. Specifications Multiser ver 5000 (Base Unit) ..................................................................................................1 3 Expansion Modules...............................................................
Multiser ver 5000 4 3.5 Default Node Numbers and Node IDs ............................................................................27 3.6 Examples of Network Designs ..................................................................................
T able of Contents (continued) T able of Contents 5 5.5.7 Removing the CCM .........................................................................................................46 5.6 Installation Procedures ........................................
Multiser ver 5000 6 External CSU/DSU to Internal CSU/DSU .............................................................................62 External CSU/DSU to External CSU/DSU.............................................................................62 CCM Indicators .
T able of Contents (continued) T able of Contents 7 Introduction to X.21 .................................................................................................................77 Port Configuration for the X.21 Link .........................
Multiser ver 5000 8 Fixed Destination Connection ...............................................................................................112 Class Connections .....................................................................................
T able of Contents 9 Dialog Messages .......................................................................................................................141 11.5 Network Security .....................................................................
Multiser ver 5000 10 13. LCD/Keypad 13.1 General LCD/Keypad Information .............................................................................165 LCD Blinking Backlight ...........................................................................
T able of Contents 11 Display Messages W orksheet ..................................................................................................188 V oice/Fax Parameters W orksheet ..................................................................
Multiser ver 5000 12 Fast Packet ...............................................................................................................................217 V oice/Fax Module .....................................................................
CHAPTER 1: Specifications 13 Multiser ver 5000 (Base Unit) MX219A Performance Specifications Multiplexor T echnique — Fast Packet Multiplexing Capacity — Data Channels: up to 5 (Ports A2 to A6) Fe.
Multiser ver 5000 14 Async Channel Characteristics Capacity — up to 41 Speed — 50 to 38,400 bps Configuration — DCE ABR — to 19.2 Kbps Parity — Odd, Even, Mark, Space, None Stop Bits — 1, 1.
CHAPTER 1: Specifications 15 Expansion Modules MS5 Expansion Module Sync/Async MX215C Connectors — (6) DB25 (female) Interface — RS-232, V .24/V .28 T ransmission Mode — Serial async; full-duple.
Multiser ver 5000 16 MS1 V oice/Fax Cards MX225C-1 AND MX225C-2 General Specifications Channels per V oice/Fax Card — MX225C-1: One channel MX225C-2: T wo channels Signals Suppor ted — Analog voic.
CHAPTER 1: Specifications 17 Signaling Specifications For mats — Dial Pulse: ≤ 3% distortion @ 10 pulses per second Dual T one Multifreq: ≤ 1% distortion Steady DC (E&M): T ypes I, II, III, .
Multiser ver 5000 18 MS1 56K CSU/DSU Module MT150C Network Application — 4-wire DDS inter face to A T&T Digital Data Ser vice network (or equivalent) Data Rate — 56 Kbps Connectors — RJ-48S .
CHAPTER 1: Specifications 19 MS1 NMS Module MX227C Command and Printer Por ts: Connector — DB25 (female) Interface — RS-232/V .24/V .28 T ransmission Mode — Serial async Data Rates — Up to 19.2 Kbps Alar m Relay Connector — 4-position terminal block MS1 V .
2.1 The Multiser ver 5000 (Base Unit) The Multiser ver 5000 is a communications-network multiplexor . It integrates data, voice, fax, and external LAN bridge network traffic for transmission over a si.
CHAPTER 2: Introduction 21 three (3) high-speed interconnect links (a Multiser ver -to-Multiser ver connection) in ports A1 to A3, five (5) mux links (a Multiser ver -to-feeder- mux connection) in ports A1 to A5, or five (5) data input/output channels in ports A2 to A6.
Multiser ver 5000 22 PRODUCT NAME ............................................................ORDER CODE MS1 56K CSU/DSU Module (cabling included) ................................MT150C CSU/DSU MS ......................................................
CHAPTER 2: Introduction 23 2.3 The CommPak The Multiser ver 5000 Commpak plug-in software cartridge contains all of the Multiser ver 5000’ s operating software. T o add features and program upgrades is simple—just change the cartridge. NOTE: The Multiserver 5000 CommPak cartridge is required for the unit to operate.
Multiser ver 5000 24 2.8 MS1 NMS Module (MX227C) The MS1 NMS Module (network management system module) fits underneath the CCM on the rear panel of the Multiser ver 5000. It features a command port to hook up a PC or terminal, a printer log port to connect a serial printer , and an alarm relay .
CHAPTER 2: Introduction 25 2.12 Manual T ext Conventions This manual uses the following standard conventions: Partial menus are shown, and they will be in the following format: Menu flows will show you what option you should select.
Multiser ver 5000 26.
Multiser ver 5000 26 3.1 Initial Considerations The Multiser ver 5000 offers the ability to connect one of the following units and their associated links: • Multiser ver (1000 or 5000) via an Interconnect Link. • Feeder Mux (Communication Box II or Statplex Multiplexor) via a Mux Link or an X.
CHAPTER 3: Network Design and T opologies 27 3.4 Syntax for Node Numbers and IDs Multiser ver units and compatible multiplexors share the same syntax for the node numbers and IDs. Node # Syntax: Use 1 through 254. (Number 1 is input as 1, not 001.) Node ID Syntax: One to eight uppercase or lowercase characters.
Multiser ver 5000 28 A3 A5 A4 A3 A5 A4 A1 A2 A1 A2 PORT Local Hub Group Remote Hub Group A1 A2 A1 A2 Figure 3-1. In this distributed star , A1 and A2 are inter connect links. A3, A4, and A5 are mux links. Figure 3-2. A1 and A2 are inter connect links.
CHAPTER 3: Network Design and T opologies 29 3.6 Examples of Network Designs S INGLE L INK P OINT - TO -P OINT The most basic of topologies is the point-to-point: point A to point B.
Multiser ver 5000 30 D UAL L INK P OINT - TO -P OINT Figure 3-5 illustrates a dual-link, point-to-point application. All traffic between Multiser ver nodes is load- balanced between Link A and Link B. In the event of a single link failure, all traffic is automatically rerouted over the secondary link (link B).
CHAPTER 3: Network Design and T opologies 31 S TRING If several Multiser ver units are strung together , a string topology is created (Figure 3-6). The limitations to this application are the following: • Maximum six hops • No closed loops Any or all of these may be Multiser ver 5000 units.
Multiser ver 5000 32 S TA R The star topology (Figure 3-9) is a network with a single major center (hub) connected to (up to) five access points. The Multiser ver 5000 can have three of the links connected to other Multiser ver units with two additional links connected to feeder muxes.
CHAPTER 3: Network Design and T opologies 33 D ISTRIBUTED S TA R If two Multiser ver star networks are connected, the topology can be described as a distributed star .
Multiser ver 5000 34 This chapter explains how to install the Multiser ver base unit. Once installation is completed, you will be ready to configure. It is assumed that your Multiser ver has all optional modules already installed. Module installation is discussed in chapter 5.
CHAPTER 4: Base-Unit Installation 35 4.2 CommPak Cartridge Installation and Removal I NST ALLING THE C OMM P AK C ARTRIDGE The CommPak cartridge contains the operating software for the Multiser ver . When a cartridge is not being used, it should be stored in an anti-static bag.
Multiser ver 5000 36 On the front of the unit is a liquid-crystal display (LCD). After the unit completes its internal tests, the clock will start and the LCD will display a message. The LCD backlight will also flash. This indicates that there is alarm message, probably Local Link reset A1 .
CHAPTER 4: Base-Unit Installation 37 4.6 Identify the Module Locations and Channel Numbers M ODULE L OCA TION AND N OMENCLATURE There are five chassis positions available for modules in the Multiser ver 5000. These are identified from bottom to top as module locations A through E.
Multiser ver 5000 38 the Multiser ver 5000. • The CCM module has six connectors and is located in module location A. From left to right these connectors are numbered sequentially (1 to 6). The channel numbers correspond to the module and connector locations.
CHAPTER 4: Base-Unit Installation 39 J13 J1 1 J14 BA TTERY J15 E1 PORT 6 PORT 5 PORT 4 PORT 3 PORT 2 PORT 1 J17 J18 J1 J2 J3 J4 J16 Figure 4-9. The CCM Board.
Multiser ver 5000 40 5.1 Module Stacking Order Although you are not actually installing the modules yet, it is important to become familiar with the five chassis positions available for modules in the Multiser ver unit. These are identified from bottom to top as module locations A through E (see Figure 5-1 ).
CHAPTER 5: Module Installation 41 5.2 Module-Location Switch Settings Each expansion module has a module-location switch group S1 that informs the software of its location in the Multiser ver unit (see Figure 5-2 ). There are two exceptions: the CCM, which is always in module location A, and the NMS module, which is always located below the CCM.
Multiser ver 5000 42 5.3 Inter-Module Stacking Connectors The modules are powered via the stacking connector located on the front right side looking from the front of the Multiser ver unit. In Figure 5-3 , the back of the unit is shown, and the connectors are therefore on the left.
CHAPTER 5: Module Installation 43 5.4 Blank Back Panel The unit is delivered with blank back panels to eliminate an open area in the rear of the unit where there are no modules installed ( Figure 5-4 ). Do not discard unused blank back panels; they may be needed later .
Multiser ver 5000 44 5.5.1 U NPLUG THE M UL TISERVER Remove the power cord from the wall outlet. The Multiser ver unit contains electrosensitive components that could suffer damage from static discharge. Ground yourself by touching any grounded equipment.
CHAPTER 5: Module Installation 45 cover . The delicate metallic finger stocks are located at the front and rear of the cover . They are needed to make contact with the bottom enclosure and to ensure compliance with FCC Part 15 or FTZ radiated emission standards.
Multiser ver 5000 46 5.5.4 R EMOVE S P ACERS Inside the front of the Multiser ver unit, there are six spacers for positioning the modules (see Figure 5-9 ). T o remove a spacer , simply slide the spacer up and out of the unit. Set the spacers aside for reassembly .
CHAPTER 5: Module Installation 47 5. Disconnect the fan connector from the CCM. 6. Disconnect the 34-pin NMS module ribbon cable, if it is installed. 7.
Multiser ver 5000 48 5. Connect the 26-pin LCD ribbon cable to the CCM. 6. Connect the fan connector to the CCM. 7. Connect the 34-pin NMS Module ribbon cable, if installed, to the CCM. 8. Place a spacer on top of the CCM by inserting it at the top of the bezel at the front of the unit and then sliding it down until it rests on the module .
CHAPTER 5: Module Installation 49 5.6.4 R EMAINING S P ACERS When finished installing the modules, reinstall any remaining spacers. 5.6.5 I NST ALLING B LANK B ACK P ANELS The space above the last mod.
Multiser ver 5000 50 5.6.6 P UT THE C OVER B ACK O N 1. Be sure that all spacer positions have been filled before replacing the cover to ensure proper module connections. 2. Be sure blank back panels have been installed into the back of the unit to eliminate open spaces.
CHAPTER 5: Module Installation 51 5.7 Converters (Optional Equipment) The converter is attached externally to the Multiser ver unit. The V .35 and X.21 Converters consist of an adapter (which connects directly to the Mulitser ver) and a cable. The cable is included with the V .
Multiser ver 5000 52 6.1 Multiser ver Base Unit Location Y our Multiserver should be installed at its location. If you have a Rackmount Kit, install it now (see Appendix G ).
CHAPTER 6: Getting Started 53 6.3 The Command Facility The Command Facility contains menus to configure the ports, node, and data channels. Y ou will need to access the Command Facility often during the configuration process. When an ASCII terminal is connected, the screen is blank except for the cursor position.
Multiser ver 5000 54 A CCESS THE C OMMAND F ACILITY VIA $CMD Press <cr> . At the ENTER CLASS prompt, enter $CMD . There is no default password. Just press <cr> . The Command Facility Main Menu appears. E XITING THE C OMMAND F ACILITY T o Exit the Command Facility , press <break> or select option 12.
CHAPTER 6: Getting Started 55 6.4 Reset Defaults Use one of the following methods to ensure that the Multiser ver’ s configurations are set to standard default values. • Enter the Command Facility Main Menu to per form a cold start. • Per form a cold start using the front-panel keypad.
Multiser ver 5000 56 6.5 Name the Local Node Y ou will need to assign the local node a number and name to differentiate it from remote nodes. Refer to the worksheets you used in connection with Chapter 3.0, Planning Y our Network . Before proceeding, please review: Section 3.
CHAPTER 6: Getting Started 57 When you have entered a valid number and ID, the following message will appear: Enter Y to store your changes and to reset the local node. If you select C , you will be returned to the NODE ID CONFIGURATION Menu and your configuration will be placed in temporary storage.
Multiser ver 5000 58 6.6 Quick Setup C AN Y OU D OA Q UICK S ETUP ? A quick installation can be done to get a point-to- point Multiser ver network up and running in a short amount of time. Y ou will be force-connecting all the channels within the network (A2 to A2, A3 to A3, etc.
CHAPTER 6: Getting Started 59 T HE F ORCE -C ONNECTION The force-connection is accessed through the Command Facility . Press <cr>. After all channels have been force-connected, you can connect terminals to the ports and pass data between them. Individual channels can be reconfigured as the need arises.
Multiser ver 5000 60 7.1 Over view This chapter discusses setting up your Multiser ver network before it is installed in remote locations. Configuring and testing your network in one location before its final installation will alleviate many problems that would result from not having a Network Manager at each of your remote sites.
CHAPTER 7: Bench Configuration and T esting 61 12 456 A B C D E 3 1 2 3 4 5 6 7 8 9 10 11 12 12 KTS OPX SB M E SG R1 T1 R T VOICE CHANNEL 1 KTS OPX SB M E SG R1 T1 R T VOICE CHANNEL 2 KTS OPX SB M E S.
Multiser ver 5000 62 7.2 Using CSU/DSUs with the Interconnect Link Figure 7-2 illustrates a Multiserver network, with a Multiser ver 5000 as the central hub and three other Multiser vers attached to the local hub. Each interconnect link is set up differently .
CHAPTER 7: Bench Configuration and T esting 63 7.3 Using Modems with the Interconnect Link Figure 7-3 illustrates how modems can be used to connect two Multiser vers. The modems you use with your Multiser vers must be V .32 or better , capable of synchronous, full-duplex, leased-line operation.
Multiser ver 5000 64 7.4 The Sync Data Channel Because of the myriad of different protocol and equipment combinations available for sync data channels, there is no simple test that will ensure your sync application will run smoothly . Y ou will need to complete data-channel configuration and then test your specific application.
CHAPTER 7: Bench Configuration and T esting 65 12 456 A B C D E 3 12 456 A B C D E 3 Local Multiserver Async terminal (DTE, DB25) Async terminal (DTE, DB25) Async terminal (DTE, DB25) Remote Multiserver Interconnect link Figure 7-5. T esting Asynchronous Data Channels.
Multiser ver 5000 66 The Multiser ver will connect port A4 to port A5 and you will get a CONNECTED message. Data can now be exchanged between the two data channels. 4. Pass data between the terminals in both directions, and verify that the data has passed correctly .
CHAPTER 7: Bench Configuration and T esting 67 12 456 A B C D E 3 12 456 A B C D E 3 MS RLB COMMP AK MS RLB COMMP AK Figure 7-6. T esting the RLB Module in a ThinNet environment.
Multiser ver 5000 68 7.6 T esting the RLB Module During Bench Configuration, you can quickly test your MS RLB Modules to verify that they are working properly . T HIN N ET By default, the BNC connector on the RLB Module is active. ThinNet Ethernet can connect directly to the back of the RLB Module.
CHAPTER 7: Bench Configuration and T esting 69 7.7 V oice/Fax Channels V oice/fax channels are by default strapped for KTS—the setting for standard telephones. T esting voice channels is a matter of force-connecting two channels and plugging in standard telephones.
Multiser ver 5000 70 8.1 T ypes of Links There are three types of links in the Multiser ver system: An Interconnect Link connects two Multiservers (usually over an analog or digital circuit provided by the telephone company). A Mux Link connects a Multiser ver to a compatible multiplexer .
CHAPTER 8: Link Configuration 71 8.4 Port Configuration Before the link is installed, the port assigned to the link must be configured. Configure the port after the local node is named (see Section 6.6, Name the Local Node ). The Port Configuration Menu is accessed from the Configure Local Nodes Menu.
Multiser ver 5000 72 8.5 The Interconnect Link P ORT C ONFIGURATION FOR THE I NTERCONNECT L INK The Interconnect Link is for connection to another Multiser ver . From the Port Configuration Menu, select option 3. For most applications, select Sync External Clocks.
CHAPTER 8: Link Configuration 73 When the local Multiser ver 5000 connects to another Multiser ver , it scans the remote Multiserver , reads the node ID and numbers of the remote Multiser ver and feeder muxes, and stores the information in memory .
Multiser ver 5000 74 Next, select option 3 from the remote Command Facility menu. It may seem to be a paradox to use the term “local node” when configuring the remote Multiserver . Remember that when the remote Multiser ver’ s Command Facility is accessed, in essence you are at the remote site working as a local user .
CHAPTER 8: Link Configuration 75 8.6 The Mux Link P ORT C ONFIGURA TION FOR THE M UX L INK The mux link is for connecting the Multiser ver to a feeder mux. The mux link can either be a leased line or a crossover cable to a locally-placed feeder mux. From the Port Configuration Menu, select option 4.
Multiser ver 5000 76 F EEDER M UX N ODE ID S Y ou should renumber and rename a feeder mux after configuring its link. Mux and X.21 links have default numbers and names according to the port they are assigned (see Section 3.5 ). If there is a problem ascertaining the mux node ID, you may display the node status.
CHAPTER 8: Link Configuration 77 8.7 The X.21 Link I NTRODUCTION TO X.21 Unlike the mux links (leased-line links), which are permanently connected, X.21 is a pay-as-you-go link. When a signal is raised, the network automatically establishes the link to the remote side.
Multiser ver 5000 78 X.21 LINK PARAMETERS 1. LOCAL X.21 CONNECT MODE [DATA ACTIVITY CONNECT] 2. LOCAL X.21 NUMBER OF RETRIES [20] 3. MB2 X.21 CONNECT MODE [DATA ACTIVITY CONNECT] 4. MB2 X.21 NUMBER OF RETRIES [20] CR - ACCEPT DATA M - MAIN MENU ENTRY: T able 8-2.
CHAPTER 8: Link Configuration 79 T able 8-2. X.21 Link Parameters (continued) Option Default Description 2. Local X.21 Number 20 This option selects the number of times the Multiserver will attempt to of Retries place a call over the X.21 network. The range is from 1 to 63 tries; the default is 20.
Multiser ver 5000 80 I NST ALL THE X.21 L INK Assuming that you have installed and configured the modem for the X.21 link, connect the cable. In X.21 link operation, the Multiser ver must be connected to a feeder mux via an external modem. It cannot be connected to another Multiser ver .
CHAPTER 8: Link Configuration 81 8.8 Review Link Configuration T o review node configuration, select option 2, Status/Statistics, from the Command Facility Main Menu. The node ID and number appear at the top of the screen. Each port configured as a link will be listed.
Multiser ver 5000 82 T o configure data channels, the local node must be named. If you have not already named the local node, refer to Section 6.6, Naming the Local Node . Data channels on remote Multiser vers can be configured once the remote Command Facility is accessed.
CHAPTER 9: Data-Channel Configuration 83 9.2 Synchronous Channels Sync is supported only when directly attached to a Multiser ver . Feeder muxes can only support async or voice channels. Sync channels are not switchable and must be force connected. Refer to Section 10.
Multiser ver 5000 84 T able 9-1. Sync Protocol Options Option Description 1. DLC Typical DLC protocols are SDLC and HDLC. The DLC protocol options are standard bit- oriented protocols, which use Hex 7E as a block separator or idle fill, and a standard CCITT polynomial for frame-check-sequence calculations.
CHAPTER 9: Data-Channel Configuration 85 per formed after changing the port configuration to sync. Leave the menu and per form the reset, and tr y this procedure again. The CHANNEL CHARACTERISTICS menu will appear . This menu differs depending on the sync protocol selected during port configuration.
Multiser ver 5000 86 T able 9-3. Sync Channel Characteristics Option Protocol Default Description Data Rate DLC 2400 Sets data rate (in bps) for the port. Note: If the ASCII Bisync 2400 Clocking Source is selected as external, the data EBCDIC Bisync 2400 rate must be configured the same as that of the H-P Sync 2400 external clocking source.
CHAPTER 9: Data-Channel Configuration 87 T able 9-3. Sync Channel Characteristics (continued) Option Protocol Default Description Interface DLC TO DTE Set TO DTE for interfacing with data terminal Type ASCII Bisync TO DTE equipment.
Multiser ver 5000 88 T able 9-3. Sync Channel Characteristics (continued) Option Protocol Default Description Number of ASCII Bisync 1 Sets the number of leading pad characters to be Leading Pad EBCDIC Bisync 1 transmitted at the start of the block. This is used Characters* H-P Sync 1 for a time delay (1-9).
CHAPTER 9: Data-Channel Configuration 89 MICOM Voice ENABLE T able 9-3. Sync Channel Characteristics (continued) Option Protocol Default Description DSR Control DLC NORMAL When set to NORMAL, remote DTR changes to ASCII Bisync NORMAL appear on the local DSR.
Multiser ver 5000 90 T able 9-5. Synchronous Clocking Cable Part Configuration Description of Use Cable Diagrams for Clocks (1) Number Normal Synchronous Use when DTE is Multiserver DTE or Cascade co-located with Multiserver. 15 TX Clock 15 EZ422 To DTE TX and RX clocks 17 RX Clock 17 EDN16C are supplied by TX Clock Internal the Multiserver.
CHAPTER 9: Data-Channel Configuration 91 T able 9-6. CCM and 6-Channel CEM (MX215C only) Local Sync Channel Interface Configured to DTE Multiserver DTE Constant Controlled Pin I/O Carrier Mode Carrier Mode Pin I/O Signal 4 I Off-to-On transition On-to-Off transition 4 O RTS raises CTS.
Multiser ver 5000 92 T able 9-7. CCM and 6-Channel CEM (MX215C only) Local Sync Channel Interface Configured to DCE Multiserver DCE Constant Controlled Pin I/O Carrier Mode Carrier Mode Pin I/O Signal 8 O Held ON. Lead output data. 4 I RTS 11 I . . . Must be ON to enable data 5 O CTS output.
CHAPTER 9: Data-Channel Configuration 93 9.3 Asynchronous Channels Before configuring an async channel, be sure that the port is configured for async (from the Port Configuration Menu). Ports (channels) A2 to A6 and all CEM module ports are by default async channels.
Multiser ver 5000 94 A SYNC C HANNEL C HARACTERISTICS The Channel Characteristics Menu is accessed from the Async Channels Menu as option 1. The operating parameters associated with all async terminals are set here The current configuration for each characteristic is shown in brackets, to the right of the menu option.
CHAPTER 9: Data-Channel Configuration 95 T able 9-8. Asynchronous Channel Characteristics Option Default Description 1. Data Rate 9600 Sets the data rate (in bps) for the port. It is recommended that ports attached to a host port be set for a fixed speed.
Multiser ver 5000 96 T able 9-8. Asynchronous Channel Characteristics (continued) Option Default Description 7. XON Character DC1 Selects the character for the X-ON function. To ascertain which control character to select, refer to the user manual of the device attached to the port.
CHAPTER 9: Data-Channel Configuration 97 Autobaud Rate Detection (ABR). The Multiser ver 5000 has the capability of automatically determining the data rate of a port in the range of 50 to 19,200 bps by dynamically examining the first (sign-on) character after a connect.
Multiser ver 5000 98 C HANNEL F EA TURES The Channel Features Menu is accessed from the Async Channel Menu as option 2. Additional inter face parameters associated with special applications are controlled by this menu. The current configuration for each menu option is displayed in brackets.
CHAPTER 9: Data-Channel Configuration 99 T able 9-11. Asynchronous Channel Features Option Default Description 1. Priority High Determines whether port is high or low priority in reference to other async ports. (Async channels always have lower priority than voice/fax or sync channels.
Multiser ver 5000 100 disconnect the channel in the event of loss of sync on the link. T able 9-11. Asynchronous Channel Features (continued) Option Default Description 8. Command Mode ^X Break There are two keying sequences available to the channel user for Entry Sequence accessing the Command Mode.
CHAPTER 9: Data-Channel Configuration 101 E XTENDED F EA TURES The Extended Features Menu is accessed from the Async Channel Menu as option 3. The current configuration for each menu option is displayed in brackets. Each of these features is explained in T able 9-12 .
Multiser ver 5000 102 9.4 Copy Channel Parameters By using the Copy Channel Parameters selection, you can configure a range of sync or async ports or a single port. If the next port(s) to be configured matches (or closely resembles) the one previously configured, this option can save you time.
CHAPTER 9: Data-Channel Configuration 103 9.5 Review Data-Channel Configuration R EVIEWING S YNC -C HANNEL C ONFIGURA TION T o review sync-data channels, enter the View Configuration menu. At this prompt, enter the node ID, a slash, and a sync channel or range of channels you wish to review .
Multiser ver 5000 104 R EVIEWING A SYNC -C HANNEL C ONFIGURA TION T o review async-data channels, enter the View Configuration menu. At this prompt, enter the node ID, a slash, and an async channel or range of channels you wish to review . (Channel ranges should be in the form: starting channel, dash, ending channel.
CHAPTER 9: Data-Channel Configuration 105 9.6 Connecting Data Channels Cables In Appendix B , there are cabling diagrams that show each type of cable you will need for the CCM and all CEMs.
Multiser ver 5000 106 This chapter discusses switching configurations for synchronous and asynchronous data channels. Information on configuring V oice/Fax channel switching can be found in the MS1 V oice/Fax Car d User’s Manual . 10.1 Switching Control The Switching Control menu is accessed from the Command Facility Main Menu as option 5.
CHAPTER 10: Switching Configuration 107 T able 10-1. Switching Control (continued) Option Description 2. Enable Channel This option returns an out-of-service async or voice/fax channel (or range of channels) to the idle state.
Multiser ver 5000 108 T able 10-1. Switching Control (continued) Option Description 4. Force Disconnect Disconnects two ports which have been force-connected.
CHAPTER 10: Switching Configuration 109 10.2 Point-to-Point Dedicated (Force Connect All) This function is designed for a single interconnect link point-to-point application ( Figure 10-1 ). If a pair of Multiser vers is to ser ve as strictly dedicated point-to-point multiplexors, the switching function is quite basic.
Multiser ver 5000 110 disconnecting ranges, see Section 10.3, Force Connecting a Range . 10.3 Force-Connecting a Range The procedures for force-connecting async and sync channels are the same. The two ports to be connected must be the same type of port (i.
CHAPTER 10: Switching Configuration 111 voice-voice, async-async, sync-sync connections will be made. If the “from” range is greater than the “to” range, the unpaired from ports will not be connected.
Multiser ver 5000 112 10.5 Asynchronous Connections The following five methods of switching are supported for async ports: Force The network operator configures a Connection dedicated connection between two ports in the network. Fixed The network operator configures Destination the destination for the user’ s channel.
CHAPTER 10: Switching Configuration 113 and then for an available port in the secondary class. The following steps are used to make a class connection. 1. At the ENTER CLASS prompt, enter the class name to which you wish to connect. 2. The class password prompt will appear on the screen.
Multiser ver 5000 114 Note: The wild card (*) can be used to access a range of ports. T o access any async port in the Multiser ver identified by the name NEW_YORK, you would type the following: NEW_YORK/* 2. The CLASS PASSWORD prompt will appear on the screen.
CHAPTER 10: Switching Configuration 115 10.7 Asychronous-Channel Switching Parameters Control of async-channel switching capability is configured through the Switching Parameters menu. T o access this menu, follow this menu sequence: Enter the appropriate information and press <cr> .
Multiser ver 5000 116 T able 10-2. Switching Parameters Option Default Description 1. Connect Protocol Dedicated Selects the communication protocol used. The protocol must be compatible with the attached device. There are three options: Dedicated — This option is used for terminals or computer ports which can operate on data activity only.
CHAPTER 10: Switching Configuration 117 T able 10-2. Switching Parameters (continued) Option Default Description 7. Resource Class None This option includes the port as part of a class. The class name must already be configured before this option can be utilized.
Multiser ver 5000 118 10.8 Classes W H A TI SA S WITCHING C LASS ? A class is a group of one or more ports that may be used for similar purposes by network users (e.
CHAPTER 10: Switching Configuration 119 MUL TISERVER 5000 PBX HOST FA X ASYNC TERMINAL COMMAND F ACILITY MUL TISERVER 1000 MUL TISERVER 1000 MUL TISERVER 1000 T o C1 and C2 T o D1 and D2 T o E1 and E2.
Multiser ver 5000 120 E XAMPLE OF A S WITCHING C LASS Figure 10-4 shows a Multiserver network. The Central Office has a Multiser ver 5000 with a 6-channel CEM and 3 V oice/Fax cards. This will be considered the local node. Each remote office has a Multiser ver 1000 with one V oice/Fax card.
CHAPTER 10: Switching Configuration 121 The Class Parameters menu appears: Each of the menu options are explained in T able 10-3 . T o include a port as part of a class, select option 7 from the Switching Parameters Menu (see Section 10.7, Asynchronous Switching Parameters , and T able 10-2 ) and insert the class name.
Multiser ver 5000 122 T able 10-3. Class Configuration (continued) Option Default Description 3. Class Password None Password protection is available for all ports assigned to a class. If a password is assigned, the user will be prompted for the class password before being allowed to continue.
CHAPTER 10: Switching Configuration 123 T able 10-3. Class Configuration (continued) Option Default Description 5. Class No Activity 0 The no activity feature monitors the class channel and, after a specified Disconnect period of time, if there is no activity on the channel, it will be disconnected.
Multiser ver 5000 124 10.9 Connect Protocol Details Connect protocol is option 1 of the Switching Parameters menu. There are three connect protocol options: Dedicated, Auto, and DTR. A discussion of the protocols and how to configure them is in Section 10.
CHAPTER 10: Switching Configuration 125 For Dual port Idle State: DTR can be high or low . The Multiser ver holds DSR, CTS, CD, and RI low . 1. Multiser ver raises DSR, CTS, and CD. 2. If DTR is high , no response is required. If DTR is low , device must raise DTR within 60 seconds.
Multiser ver 5000 126 or Initiated by Multiser ver (or remote end): 1. Calling device disconnects. 2. Multiser ver drops CTS, DSR, and CD. 3. Port is marked out-of-ser vice until device acknowledges disconnect by dropping then raising DTR.
CHAPTER 10: Switching Configuration 127 10.11 X.21 Switching Considerations There is no special async channel configuration required for use with X.21, with the following possible exception.
Multiser ver 5000 128 For additional information on configuring your port parameters, refer to Section 9.3, Asychronous Channels , and for classes, refer to Section 10.8, Classes . Y ou may wish to view the async channel configuration (see S ection 10.
CHAPTER 10: Switching Configuration 129 10.12 Review Switching Configuration for an Async Channel T o review the switching parameters of async channels, enter the View Configuration Menu. At this prompt, enter a channel or range of channels (for example, DENVER/a2-a6).
Multiser ver 5000 130 System administration can be done through the dedicated command port on the NMS module or a floating command port. This chapter assumes you are using a floating command port. 11.1 Reset A reset may be necessary to clear a channel, node, or link.
CHAPTER 11: Administration 131 After you have entered the correct channel, press the EXEcute key . T o reset to a Default or Current Configuration, press the EXEcute key at the appropriate screen. Y ou will be asked ARE YOU SURE? If you are, press the EXEcute key again.
Multiser ver 5000 132 T able 11-1. Reset Options Option Description 1. Node Disconnects the Command Facility and resets the local Multiserver node, all locally connected channels, and locally attached feeder muxes. Remote Multiservers and feeder muxes will not be reset by this option.
CHAPTER 11: Administration 133 11.2 The Command Mode The Command Mode is a single menu which supports configuration and testing of the local port and access to the Command Facility Main Menu. The local port is defined as the one to which the terminal you are using is connected.
Multiser ver 5000 134 T able 11-2. The Command Mode Option Description 1. Async Channel A selection of loopback tests. See Section 12.3, Async Channel Loopback in the Loopback Command Mode , for a complete discussion of the tests. 2. Local Channel Provides control and modification of the locally connected port.
CHAPTER 11: Administration 135 11.3 Configuring the Command Facility The Command Facility Parameters Menu controls the system time, date, system reports, external modem (if an NMS module is installed), No Activity timeout, and the LCD Banner message.
Multiser ver 5000 136 T able 11-3. Command Facility Configuration Option Default Description 1. Time 00:00:00 The system time. At power-up, the Multiserver requests the time from locally attached feeder muxes to make sure that the network agrees on the time of day.
CHAPTER 11: Administration 137 T able 11-3. Command Facility Configuration (continued) Option Default Description 6. Periodic Reporting 60 Defines the interval of time for a periodic report. There are five options: Interval None, 10, 20, 30, and 60. If None is chosen, status reports will not be output periodically.
Multiser ver 5000 138 T able 11-3. Command Facility Configuration (continued) Option Default Description 8. Output Periodic Local Remote Node . Periodic reports are output to a remote node. If remote Report Command node is selected, the node ID must be named in option 9.
CHAPTER 11: Administration 139 T able 11-3. Command Facility Configuration (continued) Option Default Description 11. External Modem None Enter the characters in the order you would have them executed.
Multiser ver 5000 140 11.4 Messages A LARM M ESSAGES Alarms generally indicate that an error has been detected that impacts or degrades the per formance for part of the network. For example, an alarm message would be sent if the line error rates were excessive, or if a link went down.
CHAPTER 11: Administration 141 will accept the entry , and the following prompt appears: Enter up to 45 characters, including spaces and punctuation. Special rules apply when entering the characters shown in T able 11-4 into the broadcast message. After the message is finished, press <cr> .
Multiser ver 5000 142 Special rules apply when entering the characters listed in T able 11-4 in a dialog message. Length: Dialog Messages vary in maximum length. Syntax: Alphanumeric characters (A to Z, 0 to 9), spaces, and all symbols may be used. Messages are not case-sensitive.
CHAPTER 11: Administration 143 T able 11-5. Dialog Messages (continued) Max Option Default Char Description 11. Unassigned UNASSIGNED 17 Sent when a node, class, or port is unknown in the network. It could also mean that a password for the class may be incorrect.
Multiser ver 5000 144 11.5 Network Security Protecting selected portions of the Command Mode and the Command Facility involves two types of security: password protection and lock-out configuration. P ASSWORDS Passwords are security protection for the Multiser ver .
CHAPTER 11: Administration 145 L OCK -O UT C ONFIGURA TION This type of security blocks access to either the Command Facility or the Command Mode. The async channel is configured so that it does not have the ability to connect to the Command Mode, the Command Facility , or both.
Multiser ver 5000 146 11.6 Status/Statistics Status and statistics reports are available on the Status/Statistics Menu. Status is a snapshot of the system as it appears the moment the request is made; statistics are a readout of the system within a defined period of time.
CHAPTER 11: Administration 147 T able 11-7. Status/Statistics (continued) Option Description 2. Channel Status (continued) 3. Interface Status This option is used to view the states of the control signals of a single data channel on the local Multiserver.
Multiser ver 5000 148 T able 11-7. Status/Statistics (continued) Option Description 4. Queue Status Lists all the class numbers, class names, and the node ID/channel of the ports queued to each class. This will display up to 30 ports per class. All 64 classes will display, whether or not they are configured.
CHAPTER 11: Administration 149 5. Voice/Fax Status If the Multiserver is equipped with a voice/fax module, this option will display a range of ports selected, the input level, the mode (on hook, off hook, busy), the software revision, and, if applicable, the test mode and test status.
Multiser ver 5000 150 T able 11-7. Status/Statistics (continued) Option Description 7. System Statistics Provides two options: the period report (the report compiled during the last reporting period) or a demand report (a snapshot of the system at the time of request).
CHAPTER 11: Administration 151 T able 11-7. Status/Statistics (continued) Option Description System status is displayed as a set of statistics in a single report. The statistics reflect system activities that have occurred since the last reporting interval.
Multiser ver 5000 152 7. System Statistics The Mux Link and the X.21 Link: (continued) [node id] CONNECT STATISTICS CONNECT MAXIMUM CLASS NAME CONNECTS FAILURES IN QUEUE ------------------------------.
CHAPTER 11: Administration 153 T able 11-7. Status/Statistics (continued) PROM ID = 907-2154-00 X ENTER CARRIAGE RETURN TO CONTINUE Revision Level.
Multiser ver 5000 154 11.7 Link Administration R ESET If a link is not working properly (interconnect, mux, or X.21), it can be reset. If the other end of the link is a feeder mux, the mux will also reset. All channels currently using the link will experience a temporary interruption.
CHAPTER 11: Administration 155 11.9 Switching Administration Monitoring the switching functions of your network is critical for high-efficiency network per formance. Most of the information you need is with the Status/Statistics menu. The following options of the Status/Statistics Menu provide switching information: Option Description 1.
Multiser ver 5000 156 T able 11-7. Status/Statistics (continued) Option Description 8. Channel Statistics Channel Statistics are part of the System Statistics (see option 7 above). When this option is chosen, the current channel statistics for the node are displayed.
CHAPTER 12: Diagnostics 157 12.1 Self-T est The self-test checks the operation of all system memory . The Multiserver automatically executes a self-test when power is first turned on or when the system is reset. All LED indicators turn ON and the Multiser ver does a RAM and ROM check.
Multiser ver 5000 158 test. The integrity of the components involved in the test can be judged by obser ving the quality of the returned data (see Figure 12-2). T o end the test, press ^X^Y or <break> . Y ou will be returned to the Command Mode.
CHAPTER 12: Diagnostics 159 12.4 System Diagnostics in the Command Facility The system administrator may per form all of the following diagnostics from the Command Facility . Some of the tests may also be per formed at the LCD/Keypad. Section 13.6, Diagnostics , explains each of the diagnostic functions that can be per formed with the LCD/Keypad.
Multiser ver 5000 160 Enter the channel to be tested. Press <cr> . These tests are per formed only on async ports from the user terminal. The menu options are the same as the Async Channel Loopback in Command Mode. Section 12.3, Async Channel Loopback in Command Mode , explains each of these tests.
CHAPTER 12: Diagnostics 161 The Fox Message T est causes a continuous fox message to be output to the test port. The port that is being tested will not be able to accept any other instructions as long as the test continues.
Multiser ver 5000 162 The following menu will appear: After the test is initiated, the Command Facility terminal will be returned to the Command Facility main menu. On the attached synchronous device, all characters entered will be echoed back to itself.
CHAPTER 12: Diagnostics 163 12.5 T esting the Network In a Multiser ver network, there are several loopback and test-pattern tests that you can use to diagnose the integrity of various segments of the network.
Multiser ver 5000 164 3. Y ou may do either one of the following setups: a. • Select remote echo (option 2). • Attach an async tester (i.e., a BERT) to the async port initiating the test. T ype in some data. All data entered should be received on your display .
CHAPTER 13: LCD/Keypad 165 13.1 General LCD/Keypad Information The Multiser ver 5000 has an LCD (Liquid Crystal Display) and a keypad on the front of the unit. The 80-character LCD consists of two 40-character lines. The LCD is used to display status and alarm messages, as well as diagnostic and minimal configuration menus.
Multiser ver 5000 166 LCD B LINKING B ACKLIGHT When working in the menus, should the backlight begin blinking, it means that there is an alarm message. Y ou can exit to the top level (Banner Message Display) and read the message or just clear the blinking backlight.
CHAPTER 13: LCD/Keypad 167 Banner Message Section 13.2 Review System Message Log Section 13.3 Menu Functions (password) Section 13.4 Administration Section 13.
Multiser ver 5000 168 C HANNEL N UMBERS When the LCD display requests you for a channel number , use the following keys as shown. The default channel number display is A01; the cursor will be positioned beneath the A. • If the port desired is A5, you will not change the A.
CHAPTER 13: LCD/Keypad 169 C ONFIGURING THE B ANNER M ESSAGE The factory default message for the LCD is Name Y our Node. This message can be customized at an async terminal operating in the Command Facility . Follow these procedures: At this prompt, enter the LCD Banner Message.
Multiser ver 5000 170 V OICE /F AX If a voice/fax module is installed, this menu offers the following two options: Option Description Reset Resets the selected voice/fax Channel channel. Busy Mode Controls how the busyout state of the channel is determined.
CHAPTER 13: LCD/Keypad 171 Press Key Resulting Display The node number appears in the brackets. (The number shown above in the brackets is the default node number .
Multiser ver 5000 172 This menu offers the following test options: Option Description Sync Causes a sync port to be placed in Channel local echo loopback similar to the Loopback async echo. W ARNING : This test will interrupt all channels connected across the link.
CHAPTER 13: LCD/Keypad 173 +1 dB + OK LO RO LS RS TM OK LO RO LS RS TM -4 dBm THROUGH +1 dBm -15 dBm THROUGH -5 dBm -25 dBm THROUGH -16 dBm < -25 dBm CHANNEL 2 CHANNEL 1 = ON = OFF = GREEN LIGHT LEGEND: NORMAL = 2 LIGHTS ON. IF CONVERSA TION IS GOING ON, THIRD LIGHT IS FLICKERING.
Multiser ver 5000 174 Display voice/fax signal. The indicator lights on the voice/fax module show the level (see Figure 13.5 ). When this test is initiated, the display will read [Active] . T erminate T erminates all the tests initiated at T est this menu.
Appendix A: W orksheets 175 This section of the manual contains worksheets to help you organize and keep a record of your network and of your asynchronous and synchronous channel configurations. Copy these sheets as many times as necessary (keep these blank originals to make future copies).
Multiser ver 5000 176 Node # NODE ID PORT A1 Node # NODE ID A2 Node # NODE ID A3 Node # NODE ID A4 Node # NODE ID A5 Node # NODE ID W orksheet for Planning Node Numbers and Node IDs.
Appendix A: W orksheets 177 Local CCM CCM Remote CCM CCM W orksheet for Recording Optional Modules and their Connectors.
Multiser ver 5000 178 NODE ID (name) Channel Protocol Data Channel Max. Max. Interface Carrier Sync Number Rate Clocking T ransmit Receive T ype Mode Char .
Appendix A: W orksheets 179 continued from ← facing page Number Pad Number Number Encoding Idle Buffer Clock DSR of Char . of of Fill Control Flow Ctrl.
Multiser ver 5000 180 NODE ID (name) Channel Data Code Parity Stop Echo T o Host/ Number Rate Level Bits T o T erminal continued on facing page → Asynchronous Channel Characteristics W orksheet.
Appendix A: W orksheets 181 continued from ← facing page X-ON X-OFF Buffer Flow CR LF FF Char . Char . Ctrl. Ctrl. Delay Delay Delay NODE ID (name) Asynchronous Channel Characteristics W orksheet (c.
Multiser ver 5000 182 NODE ID (name) Channel Priority EIA Smooth T andem Flow- HP Number Ctrl. Scroll Control Strip ENQ/ACK Asynchronous Channel Featur es W orksheet continued on facing page →.
Appendix A: W orksheets 183 Sync Loss Command Mode Command Command Facility Local Channel Disconnect Entr y Sequence Mode Access Main Menu Access Configuration NODE ID (name) Asynchronous Channel Feat.
Multiser ver 5000 184 NODE ID (name) Channel Number Data Compression Remote CTS Control Asynchronous Channel Extended Featur es W orksheet.
Appendix A: W orksheets 185 Channel Class Secondar y Class Password Class Class Number Number Name Class (record here and in Message Activity T imeout the Password T able) NODE ID (name) Record of Asy.
Multiser ver 5000 186 NODE ID (name) Option Entry Connect Protocol Unbalanced Rates Call Inhibit Receive Inhibit Character Set Matrix Switching Resource Class Destination Node/Class Channel Password S.
Appendix A: W orksheets 187 Option Entry Event Reporting Alarm Reporting Switch Statistics Reporting Periodic Reporting Interval Output Event/Alarm Reports Output Periodic Report Remote Node ID Extern.
Multiser ver 5000 188 Option Entry Channel Password Welcome Class Request Class Password Connected Queue Busy Disconnected Now Answer Unavailable Unassigned Incompatible Call in Progress NODE ID (name.
Appendix A: W orksheets 189 Option Entry Mode Digitizing Rate Input Level Gain Output Level Attenuation Busyout Mode Bandwidth Background Priority Number of Rings Signalling Format Analog Operation Ri.
Multiser ver 5000 190 NODE ID (name) Option Entry Global Status LCD/Keypad Class Number Class Name Class Password Node ID Channel Number User Channel Password Record of Passwor ds.
Appendix B: Cabling Diagrams 191 This appendix contains cabling diagrams for the following: • Cabling for the CCM and 6-Channel CEMs (p. 192 ) • Cabling for the 12-Channel CEM (p. 198 ) • Cabling for the 12-Channel CEM with Line Drivers (p. 202 ) • Cabling for the MS1 56K CSU/DSU Module (p.
Multiser ver 5000 192 Cabling for the CCM and 6-Channel CEMs CCM 6-CHANNEL CEM PROTECTIVE GROUND TX DA T A RX DA T A RTS (REQUEST -TO-SEND) CTS (CLEAR-TO-SEND) DSR (DA T A SET READY SIGNAL GROUND CD (.
Appendix B: Cabling Diagrams 193 Figure B-1. T o DTE, Male-to-Male Straight Cable (EZ422-0015). Cabling for the CCM and 6-Channel CEMs (continued) 1 2 3 4 5 6 7 8 11 15 17 18 20 22 24 25 1 2 3 4 5 6 7.
Multiser ver 5000 194 Figure B-2. T o DCE, Male-to-Male Crossover Cable (EZ423-0015). Cabling for the CCM and 6-Channel CEMs (continued) 1 2 3 4 5 6 7 8 11 15 17 18 20 22 24 25 1 3 2 8 11 20 7 4 5 18 .
Appendix B: Cabling Diagrams 195 Figure B-3. T o DCE, Male-to-Female Crossover Cable (EZ424-0015). Cabling for the CCM and 6-Channel CEMs (continued) 1 2 3 4 5 6 7 8 11 15 17 18 20 22 24 25 1 3 2 8 11.
Multiser ver 5000 196 Figure B-4. T o DTE or Feeder Mux, Male-to-Female Straight Cable (EDN16C-M/F: specify length). Cabling for the CCM and 6-Channel CEMs (continued) 1 2 3 4 5 6 7 8 11 15 17 18 20 2.
Appendix B: Cabling Diagrams 197 Figure B-5. X.21 bis Line T er minator and Composite Cable. Cabling for the CCM and 6-Channel CEMs (continued) 2 3 5 6 7 11 18 20 24 25 3 2 4 20 7 5 15 6 17 22 DB25 MALE P1 TO MUL TISERVER TO X.
Multiser ver 5000 198 12-CHANNEL CEM (DCE) 1 2 3 4 5 6 7 8 RJ-45 PIN ASSIGNMENTS PIN 1 RJ-45 RING RLSD DTR GND RXD (DA T A OUT) TXD (DA T A IN) CTS RTS Cabling for the 12-Channel CEM.
Appendix B: Cabling Diagrams 199 Figure B-6. T o DTE, Straight Cable Adapter (EZ419-0015). Cabling for the 12-Channel CEM (continued) 1 2 3 4 5 6 7 8 22 8 20 7 3 2 5 4 RJ-45 25-PIN CONNECTOR (MALE) TO.
Multiser ver 5000 200 Figure B-7. T o DCE, Crossover Cable Adapter (EZ420-0015). Cabling for the 12-Channel CEM (continued) 1 2 3 4 5 6 7 8 25 4 6 7 2 3 11 8 RJ-45 25-PIN CONNECTOR (MALE) TO MUL TISER.
Appendix B: Cabling Diagrams 201 Figure B-8. T o DTE, Straight Cable Adapter (EZ421-0015). Cabling for the 12-Channel CEM (continued) 1 2 3 4 5 6 7 8 22 8 20 7 3 2 5 4 RJ-45 25-PIN CONNECTOR (FEMALE) .
Multiser ver 5000 202 12-CHANNEL CEM WITH LINE DRIVER (DCE) BLACK RED GREEN YELLOW RX+ RX- TX- TX+ TX+ TX- RX- RX+ 1 2 3 4 5 6 7 8 RJ-45 PIN ASSIGNMENTS RS-422 CUSTOMER EQUIPMENT BLACK RED GREEN YELLO.
Appendix B: Cabling Diagrams 203 Figure B-9. Straight Cable for 12-Channel Expansion Module with Line Driver (EL08MS). Cabling for the 12-Channel CEM with Line Drivers (continued) 1 2 3 4 5 6 7 8 1 2 .
R1 T1 T R 1 2 3 4 5 6 7 8 RJ-48 PIN ASSIGNMENTS 56K DIGIT AL NETWORK PIN 1 RJ-48 PIN 8 Multiser ver 5000 204 LEA VE A1 EMPTY RJ-48 CONNECTOR RJ-48 A T BOTH ENDS OF CABLE CSU/DSU 12 456 A B C D E 3 1 2.
Appendix B: Cabling Diagrams 205 NMS PROTECTIVE GROUND TX DA T A RX DA T A RTS (REQUEST -TO-SEND) CTS (CLEAR-TO-SEND) DSR (DA T A SET READY SIGNAL GROUND CD (CARRIER DETECT) UNASSIGNED DTR (DA T A TER.
Multiser ver 5000 206 Cabling for Converters DB25 (RS-232) DCE CONVERTER 12 456 A B C D E 3 1 2 3 4 5 6 7 8 9 10 11 12 12 KTS OPX SB M E SG R1 T1 R T VOICE CHANNEL 1 KTS OPX SB M E SG R1 T1 R T VOICE .
Appendix B: Cabling Diagrams 207 Figure B-10. RS-232/V .35 Converter to DCE with Male-to-Male Cable (EHN070-005M, included with adapter). Cabling for Converters (continued) 3 4 19 18 2 1 24 23 17 16 DB25 CONNECTOR P1 (MALE) TO V .35 CONVERTER V .35 CONNECTOR P2 (MALE) 20 6 8 11 13 25 22 7 P S Y a R T V X U W SER.
Multiser ver 5000 208 Figure B-11. RS-232/V .35 Converter to DTE with Male-to-Female Cable. (EHN071-005M). Cabling for Converters (continued) 2 1 15 14 3 4 17 16 24 23 DB25 CONNECTOR P1 (MALE) TO V .35 CONVERTER V .35 CONNECTOR P2 (FEMALE) 6 20 13 5 8 22 25 7 P S Y a R T V X U W SER.
Appendix B: Cabling Diagrams 209 Figure B-12. X.21 Converter to DCE with Female-to-Male Cable (EVNX21-003M-MF , included with adapter). Cabling for Converters (continued) DB15 CONNECTOR P1 (FEMALE) DB15 CONNECTOR P2 (MALE) PIN 1 CONNECTS TO MUL TISERVER X.
Multiser ver 5000 210 Figure B-13. T andem Cable Diagram. Cabling for Use with T andem 1 2 3 4 5 6 7 8 20 22 25 1 2 3 4 5 6 12 7 8 20 22 25 25-PIN CONNECTOR (MALE) 25-PIN CONNECTOR (FEMALE) CONNECTS T.
Appendix C: Defaults 211 System Administration Por t Configuration Menu Item Default Port A1 ..................................................................................Interconnect Link All others ...............................................
Multiser ver 5000 212 System Administration (continued) Command Facility Parameters Menu Item Default Event Reporting ....................................................................Off Alarm Reporting..............................................
Appendix C: Defaults 213 Asynchronous Channel Configuration Channel Characteristics Menu Item Default Data Rate .............................................................................9600 bps Code Level ..........................................
Multiser ver 5000 214 Synchronous Channel Configuration Channel Characteristics Menu Item Default Sync Protocol .......................................................................DLC DLC Data Rate ..................................................
Appendix C: Defaults 215 Synchronous Channel Configuration (continued) RTS/CTS Menu Item Default Data Rate .............................................................................2400 bps Channel Clocking .........................................
Multiser ver 5000 216 Synchronous Channel Configuration (continued) H-P Sync Menu Item Default Data Rate .............................................................................2400 bps Channel Clocking ...........................................
Appendix C: Defaults 217 Synchronous Channel Configuration (continued) TDM Menu Item Default Data Rate .............................................................................2400 bps Channel Clocking .............................................
Multiser ver 5000 218 V oice/Fax Module KTS Interface Menu Item Default Mode .....................................................................................Voice/Fax Digitizing Rate ...............................................................
Appendix C: Defaults 219 V oice/Fax Module (continued) V oice/Fax Node Parameters Menu Item Default Number of Digits (for extension numbers) ...........................2 V oice/Fax Switching Parameters Call Inhibit ....................................
Multiser ver 5000 220 NMS Module Command Por t Menu Item Default Data Rate .............................................................................ABR Code Level ...........................................................................8 Parity .
Appendix D: Messages 221 The messages are divided into two categories, screen display messages and LCD messages. Included in these lists are messages received from all the optional modules. Screen Display Messages M ESSAGE T YPE : Alarm Vital to the system’ s operation; may cause an interruption to that operation.
Multiser ver 5000 222 ni ADB PROCESS ABORTED Event An attempt to place a call on the dial lines has LINK # ci failed. This message is displayed by the call originating modem. APPLICABLE TO RTS Info In trying to configure an Integral LAN module, FUNCTIONALITY ONLY you have selected a module location which does not support RTS functionality.
Appendix D: Messages 223 CHANNEL NOT INSTALLED Info An attempt has been made to configure or test a voice/fax port and the port number selected is not a voice/fax port. CHANNEL(S) NOT Info An attempt has been made to view the status INSTALLED or configuration of a range of ports that are not voice/fax ports.
Multiser ver 5000 224 CONNECT FAIL MATRIX n/c Event The matrix connection request made by the local port did not complete successfully. Also, the password may be incorrect. <CONNECTED> Dialog This message is sent to the async user when a connection has been established across the link.
Appendix D: Messages 225 ni DIALING TX SECONDARY Info The modem is dialing the secondary TX dial LINK # ci line number. This usually indicates that the call to the primary TX number cannot be completed (the number is busy, no answer, etc.). This message is displayed by the call-originating modem.
Multiser ver 5000 226 INCOMPATIBLE Info You are trying to connect a mux link to the LINK TYPES port configured as an interconnect link or vice versa. INCORRECT CHANNEL Info The port selected for the t.
Appendix D: Messages 227 ISU LOCAL LOOPBACK Diagnostic The ISU on link ci has been placed in local ACTIVE LINK # ci loopback. ISU LOCAL Diagnostic This test puts the local ISU on link ci in LOOPBACK WITH TP loopback, then verifies the operation of the ACTIVE LINK # ci ISU by sending and receiving the test pattern.
Multiser ver 5000 228 LOCAL DIGITAL Diagnostic The RD signal is being internally looped to the LOOP LINK # ci TD signal and transmitted onto the VF line. LOCAL DTE LOOP Diagnostic The TD signal is being internally looped to the LINK # ci RD signal. LOCAL FOX Diagnostic The port is in a local fox loopback test.
Appendix D: Messages 229 NO ASYNC CHANNELS Info A port or ports in the range selected is not WITHIN RANGE configured for async. NODE-CHANNEL NOT AVAILABLE Info A link port number was entered when ENTER CARRIAGE RETURN a sync, async, or voice/fax channel number TO CONTINUE was required.
Multiser ver 5000 230 OUTPUT DATA TEST COMPLETE Diagnostic An async channel output test is complete. PRESS BREAK TO Diagnostic To terminate a channel loopback or channel TERMINATE TEST output test, press the <break> key.
Appendix D: Messages 231 RESET REQ’D Info You have changed the sync protocol and did not perform a reset. It is necessary to reset the node before proceeding. ni RING DETECTED LINK # ci Event The number dialed (TX or RX, primary or secon- dary) is ringing.
Multiser ver 5000 232 ni TRANSMITTER RING Event A call is coming in on the transmitter side. DETECT LINK ci ni TX CONNECTION MADE Event A successful call was placed over the dial-lines LINK # ci from the modem’s TX dial line connection. This message is displayed by the call-originating modem.
Appendix D: Messages 233 VOICE CHANNEL [ n/c ] Event Voice/fax port c on node n has cleared TEST CLEARED (stopped) the current diagnostic test. <WAITING Q= n > Dialog Sent whenever the port is placed in a queue (after requesting a class which is busy).
Multiser ver 5000 234 LCD Messages M ESSAGE T YPE : Alarm Vital to the system’ s operation; may cause an interruption to that operation. Event Occurs in the regular operation of the system; most likely will not affect the system’ s operation. Info Informational.
Appendix D: Messages 235 ARE YOU SURE? Info A reset is requested. If the answer is yes, press the EXEcute key to proceed with the reset. If the answer is no, press ANY OTHER KEY except the EXEcute key to terminate without a reset. ARE YOU SURE? Info You have attempted to reconfigure a node EXE FORCES A RESET number and ID.
Multiser ver 5000 236 INTEGRAL DEVICE NOT Info You have attempted to select an Integral Device YET DEFINED Menu in which the device has been detected by the software, but is not yet identified. Example: A cold start occurs and the user attempts to access the ISU menu tree under diagnostics within the first ten seconds after the reset.
Appendix D: Messages 237 LOCAL LINK RESET ci Event or Alarm Local link ci has been reset. NEW DATE: nn / nn Event or Alarm Appears at the beginning of each new day and when the date is reconfigured.
Multiser ver 5000 238 TERMINATED Info A diagnostic test has been stopped (terminated). VOICE CHANNEL n/c Event or Alarm Termination of a busyout condition has occurred IN SERVICE on the specified voice/fax channel. WARNING: RESET Info You have requested a menu option that OCCURS.
Appendix E: Indicators 239 Appendix E: Indicators A6 A5 A4 A3 A2 A1 AT B O Figure E-1. CCM Indicator Positions. CCM LED Indicator Indicator Definition Off Flashing On AT Active Mode Indicates a fault .
Multiser ver 5000 240 T able E-2. CCM Indicator LEDs INDICA TOR ST A TUS EQUIPMENT ST A TUS AT BO A6 A5 A4 A3 A2 A1 10 X XXX X X 1 Normal equipment status 0 0 1 0 0 0 0 0 ROM Test Failure (CommPak car.
Appendix E: Indicators 241 CCM LED Indicator Indicator Definition Off Flashing On n 1 through n 12 Channel number No data activity Data activity Data activity n = module location B through D (a CEM ma.
Multiser ver 5000 242 LED Indicator Indicator Definition Normal Operation Input Level Display Loopback Self-T est OK OK On or flashing On Off On if successful; Off or Flickering if unsuccessful LO Loc.
Appendix E: Indicators 243 +1 dB + OK LO RO LS RS TM OK LO RO LS RS TM -4 dBm THROUGH +1 dBm -15 dBm THROUGH -5 dBm -25 dBm THROUGH -16 dBm < -25 dBm CHANNEL 2 CHANNEL 1 = ON = OFF = GREEN LIGHT LEGEND: NORMAL = 2 LIGHTS ON. IF CONVERSA TION IS GOING ON, THIRD LIGHT IS FLICKERING.
Multiser ver 5000 244 LL RT SI RD TD Figure E-5. CSU/DSU Module Indicator Positions. LED Indicator Indicator Definition Off Flashing On LL Local Loopback Normal operation Local Loopback Test --- is ac.
Appendix F: Device Applications 245 Extended W ANG Support Feature (W ANGX) The extended W ANG support feature (W ANGX) provides special buffer control, flow control, and code levels for W ANG 2200 computer systems support.
Multiser ver 5000 246 • HP port should be enabled when T erm T ype 10 is configured by the CPU or the terminal user . • Do not define the DC2 character for either X-ON or X-OFF when using X-ON/X-OFF flow control for Hewlett-Packard systems.
Appendix G: Rackmount Installation 247 The MS1 Rackmount Kit consists of the following items: • One rackmount tray • Four screws • Four washers—nylon filler • Four washers—nickel finish • Four clip nuts Here is how to install your Multiser ver unit in a 19-inch rack using the MS1 Rackmount Kit: 1.
Multiser ver 5000 248 Figure G-2. The Multiser ver fully installed in a 19-inch rack with the Rackmount Kit. MUL TISERVER 5000 EXE.
APPENDIX H: Additional Information 249 UPGRADE INFORMA TION from Phase 2.5 to Phase 3.0 When upgrading from a Phase 2.5 to a Phase 3.0 FEA TUREP AK_ cartridge, a cold start is not required.
Multiser ver 5000 250 DSR Control When configuring sync channels, note that the Forced On option of the DSR Control Menu forces DSR on (high) all the time rather than following the local DTR. COMP A TIBILITY between Phase 2.5 and Phase 3.0 (Mixed Network) In a mixed Phase network, the Phase 2.
APPENDIX H: Additional Information 251 Network Management System (NETMan) MICOM’ s NETMan is a software package for PCs that manages Marathon networks. This product comes in two versions: NETM- an I (manages up to ten nodes) and NETMan III (manages more than ten nodes and up to 254 networks).
Multiser ver 5000 252 ABR, autobaud rate detection — A process by which a receiving device determines the data rate, code level, and stop bits of incoming data by examining the first character received (usually a preselected sign-on character).
Glossar y 253 one bit, as in quadrature amplitude modulation, the baud rate is smaller than bps. BCC, block check character — A character added to the end of a transmission block for the purpose of error detection. BERT — Acronym for Bit Error Rate T ester .
Multiser ver 5000 254 channel — A path for electrical transmission between two or more points without common carrier -provided terminal equipment such as a local connection to DTE. Also called circuit, line, data link, or path. It may be asynchronous, synchronous, or voice.
Glossar y 255 CPU, central processing unit — The heart (main processor) of a computer system, or the computer system itself. <cr>, car riage retur n — A user-entered ASCII or EBCDIC control character used to position the print mechanism of a printer , or the cursor on a terminal display , at the left margin.
Multiser ver 5000 256 DIT , direct in ter mination — A ser vice offered by a PBX which allows incoming calls to the PBX to be routed directly to a selected telephone or group of telephones without operator inter vention. Billing does not start until the telephone answers.
Glossar y 257 Multiser ver network. On incoming calls, the fax signals are routed automatically from either the PSTN or the Multiser ver network to the fax machine. On outgoing calls, the desired destination network for the fax machine is selected by the user .
Multiser ver 5000 258 KTS, key telephone system — In industry usage, a telephone system in which the telephones have multiple pushbuttons to allow users to select outgoing/incoming calls directly , without dialing an access number such as 9. Generally , a key telephone system has limited internal telephone-to-telephone capacity .
Glossar y 259 ms, millisecond — One-thousandth of a second. multiplexor — A device that divides a composite signal among several channels. mux — Short for multiplexor .
Multiser ver 5000 260 point-to-point — A communications circuit or transmission path connecting two points. In the Multiser ver unit that connection can be force- connected (dedicated point-to-point) or switched (switched point-to-point). por t — A physical connector on the back of the Multiser ver unit.
Glossar y 261 RS-422 — An EIA-recommended standard for cable lengths that extended the RS-232 50-foot limit. Although introduced as a companion standard with RS-449, RS-422 is most frequently implemented on unused pins of DB25 (RS-232) connectors. Electrically compatible with CCITT recommendation V .
telephone interface connector — A termination on the voice/fax module that connects the analog side of the voice/fax channel to the telephone equipment such as a telephone set, key telephone system, or voice PBX.
Glossar y 263 VF , voice frequency — Any frequency within that part of the audio-frequency range essential for the transmission of speech of commercial quality (300-3000 Hz). This is the frequency range used over telephone lines. voice compression — A method of minimizing bandwidth by reducing the number of bits required to transmit voice.
Banner Message Section 13.2 Review System Message Log Section 13.3 Menu Functions (password) Section 13.4 Administration Section 13.5 System Clear Latched Alarms Default Configuration Current Configur.
Command Mode Async Channel Loopback Local Channel Configuration Command Facility Main Menu Exit* Local Echo* Remote Echo* Remote Fox* Local Fox* Channel Charac- teristics Channel Features Switching Pa.
1000 P ark Drive • Lawrence, P A 15055-1018 • 724-746-5500 • F ax 724-746-0746 © Copyright 1994. Black Box Corporation. All rights reserved..
Een belangrijk punt na aankoop van elk apparaat Black Box 5000 (of zelfs voordat je het koopt) is om de handleiding te lezen. Dit moeten wij doen vanwege een paar simpele redenen:
Als u nog geen Black Box 5000 heb gekocht dan nu is een goed moment om kennis te maken met de basisgegevens van het product. Eerst kijk dan naar de eerste pagina\'s van de handleiding, die je hierboven vindt. Je moet daar de belangrijkste technische gegevens Black Box 5000 vinden. Op dit manier kan je controleren of het apparaat aan jouw behoeften voldoet. Op de volgende pagina's van de handleiding Black Box 5000 leer je over alle kenmerken van het product en krijg je informatie over de werking. De informatie die je over Black Box 5000 krijgt, zal je zeker helpen om een besluit over de aankoop te nemen.
In een situatie waarin je al een beziter van Black Box 5000 bent, maar toch heb je de instructies niet gelezen, moet je het doen voor de hierboven beschreven redenen. Je zult dan weten of je goed de alle beschikbare functies heb gebruikt, en of je fouten heb gemaakt die het leven van de Black Box 5000 kunnen verkorten.
Maar de belangrijkste taak van de handleiding is om de gebruiker bij het oplossen van problemen te helpen met Black Box 5000 . Bijna altijd, zal je daar het vinden Troubleshooting met de meest voorkomende storingen en defecten #MANUAl# samen met de instructies over hun opplosinge. Zelfs als je zelf niet kan om het probleem op te lossen, zal de instructie je de weg wijzen naar verdere andere procedure, bijv. door contact met de klantenservice of het dichtstbijzijnde servicecentrum.